Перейти к содержимому
ЛиС ФИТО

Поиск по сайту

Результаты поиска по тегам 'досветка'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип публикаций


Блоги

  • Промышленные теплицы
  • Aleksey Kurenin
  • Блог пользователя Виктор
  • Блог пользователя grower
  • Блог пользователя Павел
  • Блог пользователя olga
  • Блог пользователя dlashin
  • Блог пользователя maxboot
  • Блог пользователя Кривянин
  • Блог пользователя Bладимир
  • Блог пользователя agros-alex
  • Блог пользователя Валерий
  • Блог пользователя iren
  • Блог пользователя trek
  • Блог пользователя Егор
  • Блог пользователя agrouz
  • igorsamusenko
  • Блог пользователя 090565
  • Блог пользователя dad
  • Блог пользователя Лемминг
  • Блог пользователя RusPol
  • Блог пользователя Машутка
  • Блог пользователя shep
  • Блог пользователя Agrimodern
  • Блог пользователя [email protected]
  • Блог пользователя Азамат
  • Блог пользователя Fragile
  • Блог пользователя pret
  • Блог пользователя Виталий
  • Блог пользователя Serg24
  • Блог пользователя TOP63
  • Блог пользователя Ольга Толмачева
  • Блог пользователя polax
  • Блог пользователя Valery N Z
  • Блог пользователя valera65
  • Блог пользователя sak68
  • Блог пользователя buch
  • Блог пользователя Андрей В
  • Блог пользователя maff
  • DINECO1
  • Блог пользователя игоревич
  • Блог пользователя batik
  • Блог пользователя tatyana
  • Блог пользователя Diman
  • Блог пользователя olg
  • Блог пользователя Gayrat
  • Марите
  • Блог пользователя kizeeva2009
  • Блог пользователя Artak
  • Блог пользователя Фёдор
  • Блог пользователя Тигран
  • Блог пользователя galina.kisilova
  • Блог пользователя nomad
  • Блог пользователя Лада
  • Блог пользователя svetapharm
  • Блог пользователя Дмитрий_87
  • Блог пользователя vs1975
  • Блог пользователя Peychev Viktor
  • Блог пользователя katyarambidi
  • Блог пользователя gepar95
  • Андрей Викторович Пучков
  • Блог пользователя zevs
  • Блог пользователя Tео
  • Блог пользователя Kamalot
  • Блог пользователя mger
  • Блог пользователя ProRus
  • Блог пользователя Сentrino090482
  • SHA
  • Блог пользователя Алексей Миронов
  • Блог пользователя Marka
  • Блог пользователя [email protected]
  • Блог пользователя Gm 1964
  • Блог пользователя 1234qwer
  • Блог пользователя ZHEZHA
  • Блог пользователя bandi654321
  • Блог пользователя kovarnaja
  • Блог пользователя Moshkin Vladimir
  • Блог пользователя Mishkurova
  • Блог пользователя louis
  • Блог пользователя [email protected]
  • Блог пользователя 24091984
  • Блог пользователя Владимир Коробочкин
  • Pyotr
  • Блог пользователя nikanysik
  • Блог пользователя Nefedova
  • Блог пользователя Дублин
  • Блог пользователя elg70
  • Блог пользователя vasilijj
  • Блог пользователя Stanislav N.
  • Блог пользователя ukrop
  • Блог пользователя Svetlana1808
  • Блог пользователя Grand1945
  • Блог пользователя ТИТ69
  • Блог пользователя nadia borisova
  • Agronomist
  • Блог пользователя Rimma
  • Блог пользователя Владимир Клименко
  • Блог пользователя decodim
  • Блог пользователя dominanta
  • Блог пользователя asprin
  • Блог пользователя Trepuz
  • Блог пользователя [email protected]
  • Марите' - блог
  • MarusyaRV' - блог
  • Биопрепарат для защиты от паразитических нематод
  • TOMA
  • TreeL_i_Ko
  • Михаил 1961 Пестициды,совместимые с биометодом
  • Egoroff
  • Давыдов
  • Серёга2185
  • Ловушка
  • Виталий.
  • ilya
  • ЗелёныйЧек
  • chernyshev
  • Игорь Матвеев
  • samura
  • Viktoriya
  • евгений михайлович биобест
  • Grower1
  • westtou
  • Greka860
  • Виталий Шапранов
  • Рапсол
  • Александр А
  • Мининвест МО
  • parn
  • Maugli
  • Greka
  • Александр2016
  • Екатерина ЭА
  • Svetlana1808
  • Био Груп
  • Регулятор роста растений «Оксигумат»
  • Гербициды
  • Процесс оформления
  • Опрыскиватели
  • вакансия главный агроном
  • xbSlick
  • Анализ почвы
  • Off TOP
  • Интересно
  • Тепличная автоматика
  • Система Испарительного Охлаждения и Доувлажнения
  • Блог Алены Кондратьевой
  • Строительство теплиц
  • Самая различная упаковка для овощей и зелени.

Форум о теплицах

  • Тепличный бизнес как отрасль
    • Новости тепличного растениеводства
    • Выставки и конференции, семинары и мероприятия
    • Тепличные хозяйства
    • Проекты, бизнес-планы и инвестиции
    • Законодательство, правовые акты и отраслевые нормативы
    • Строительство теплиц, конструкции и материалы
    • Реализация, маркетинг, цены и рентабельность
    • Организация и эффективность труда
    • Коммерческие объявления
  • Тепличные технологии и оборудование
    • Энергетика и микроклимат теплиц
    • Электрическое досвечивание растений в теплицах
    • Поливы, растворы, субстраты и удобрения для малообъемной гидропоники
    • Компьютерные программы: климатические, агрохимические, фитомониторинг
    • Измерительные приборы и датчики, агрохимические лаборатории
    • Дезинфекция и обработка: опрыскиватели, аэрозольные генераторы, сульфураторы
    • Автоматика, тележки, лотки и кассеты, прочее оборудование
    • Общие вопросы технологии и биологии
  • Выращивание плодоовощных культур и грибов в теплицах
    • Огурец
    • Томат
    • Салат и зеленные
    • Перец и баклажан
    • Земляника и ягодные культуры
    • Грибы: шампиньоны, вешенка
    • Другие пищевые культуры
  • Выращивание цветов и декоративных растений в теплицах
    • Розы
    • Тюльпаны
    • Гербера
    • Другие цветы и декоративные растения
  • Интегрированная защита растений в теплицах
    • Химическая защита растений: пестициды, стратегии применения и технологии
    • Биологическая защита растений: биометод и применение биологических препаратов
    • Химические и биологические регуляторы роста и развития растений; опыление
  • Малоразмерные фермерские и дачные теплицы, парники и оранжереи
    • Конструкции и оборудование фермерских и дачных теплиц
    • Агротехника растений в фермерских и дачных теплицах
    • Разное о фермерских и дачных теплицах
  • Беседка
    • Greenhouses designs and technologies
    • О сообществе GreenTalk.ru
    • Флудильня



Фильтр по количеству...

Найдено 56 результатов

  1. Одной из наиболее известных в Европе так называемых «городских ферм» является GROWx, расположенная в Амстердаме (Нидерланды) и снабжающая своей продукцией лучшие рестораны города. В этом хозяйстве в большом замкнутом помещении с регулируемым микроклиматом выращивают более 20 видов микрозелени - от обычного гороха до такой экзотики, как огуречная трава. Зелень выращивают в многоярусных фитоустановках с применением светодиодного досвечивания в режиме 24/г (то есть круглосуточно). В настоящее время эта фирма снабжает лишь самые лучшие рестораны города, но амбиции ее основателей простираются шире – они намерены создать сеть подобных хозяйств и в других городах. Основатели фирмы полагают, что именно так будет выглядеть сельское хозяйство в будущем. Поскольку речь идет о снабжении свежей зеленью ресторанов, вкус, аромат и свежесть продукции имеют первостепенное значение. Благодаря тому, что продукция попадает на тарелку в течение нескольких часов после сбора, ее вкус и аромат особенно интенсивны. Многоярусная фитоустановка фирмы GROWx оборудована светодиодными светильниками фирмы "Валоя AP673L", их спектр подобран таким образом, что стимулирует вегетативный рост растений (стеблей и крупных, толстых листьев) и предотвращает развитие генеративных органов (цветов). Такой спектр идеально подходит для выращивания зеленных овощей, в том числе микрозелени. Исследования, проведенные учеными Университета в Вагенингене (Нидерланды) и Университета Демокрита (Греция), свидетельствуют, что под влиянием спектра светильников AP673L в растениях стимулируется синтез цикорной, розмариновой и кофейной кислот, а также других фенольных соединений, что и повышает аромат, вкусовые качества и пищевую ценность зелени. Кроме того, здесь применяются светильники NS1, чей спектр имитирует солнечный свет, что полезно на всех стадиях развития растения. Оба светильника и их спектры запатентованы. Они обладают широким индексом цветопередачи, поэтому выращенные под ними растения по цвету и внешнему виду не отличаются от выращенных под естественным солнечным освещением. Исследование о влиянии светодиодного досвечивания на рост и содержание фенольных соединений в базилике было опубликовано в журнале «Scientia Horticulturae» (F. Bantis et al. (2016) Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success, Scientia Horticulturae 198 (2016) 277-283). Hortidaily источник: http://www.fruit-inform.com/ru/news/175985#.WoqyH-eYPBk
  2. Тайна белгородского сияния. Кому вредит зарево от теплиц Юлия Тимофеенко журналист Два года назад над ночным Белгородом появилось ещё одно световое пятно — от заработавших в феврале 2016-го теплиц в Новосадовом. Ночное небо города освещают уже 7 гигантских световых грибов. Одних такой свет пугает, другие относятся к нему с юмором. «Это межгалактический фотоновый портал, огурцы — только прикрытие», «зато светильник дома не нужен», «издали похоже на ядерный гриб, романтика» — пишут горожане в соцсетях. Корреспондент Go31 Юлия Тимофеенко выясняла, кому вредит застветка от теплиц и что с этим делать. Кому мешает засветка? Считается, что первыми о световом загрязнении заговорили астрономы. Фонари, вывески с подсветкой, иллюминация мешали изучать звёздное небо, а с развитием городов им и вовсе пришлось уйти в глушь, подальше от населённых пунктов. В 1988 году американские астрономы объединились в Международную ассоциацию тёмного неба. Эта организация борется со световым загрязнением по всему миру: создаёт по всей планете заповедники тёмного неба, чтобы «помочь вернуть ночь». В России таких парков нет. В ассоциации отмечают, что искусственный свет в ночное время вредит человеку: меняет его биоритмы, повышает риск ожирения, депрессии, расстройств сна, диабета, рака молочной железы. Но в Белгороде же не так светло по ночам, как в Москве... Да, все эти проблемы грозят скорее жителям мегаполисов. В Белгороде дела обстоят лучше. Теплицы в Новосадовом и Разумном ярко светят по ночам и, возможно, не представляют опасности для здоровья горожан. Однако учёные из Федерального научного центра гигиены имени Эресмана, где проводят исследования, на основе которых формируются нормы СанПиНа, эту проблему не изучали. А кому точно вредит свет от теплиц? По мнению доктора географических наук, профессора НИУ «БелГУ» Павла Голеусова, зарево от теплиц вредит животным и растениям. — Известны проблемы древесных насаждений, которые в городах теряют свои фенофазы (период, который проживает растение в течение года), то есть не вовремя реагируют на изменения природы: начинают цвести, когда уже нельзя, или сбрасывают листья позже, из-за этого снег на ветвях накапливается и ломает их. Зарево — большая проблема для перелётных птиц. Основной ориентир у пернатых — звёзды. Из-за засветки они не видны, поэтому птицы теряют направление. Профессор отмечает, что когда птицы сбиваются с курса, они летят через город «на ощупь» и часто врезаются в стеклянные панели. Стоп, как это нет СанПиНов? СанПиНов, которые бы регулировали уровень искусственного освещения теплиц и тепличных комбинатов, в России нет. Об этом Go31 рассказали в региональном Роспотребнадзоре. — Специальными правилами не установлены требования ... к уровням искусственной освещённости на прилегающей территории ..., — пояснили в ведомстве. Санитарно-защитная зона вокруг тепличных комплексов составляет 100 метров. А завода премиксов в Шебекине — один километр. По мнению профессора Павла Голеусова, проблема нормативного регулирования в том, что свет в СанПиНах устанавливается как необходимый фактор, а не как фактор-загрязнитель. Научному центру имени Эресмана при Роспотребнодзоре нужно провести специальное исследование, его результаты лягут в основу нормативов. И почему же учёные не проводят исследование? Потому что «не было заявок», как отметил главный научный сотрудник Лаборатории физических факторов центра Юрий Пальцев. — А мало ли вообще проблем? Исследования не проводились, заявки не было, — ответил профессор на вопрос журналиста Go31. — Эффект от засветки может быть и положительный, и негативный. Это зависит от спектрального состава, да много причин. Чтобы сказать точно, как влияет зарево на человека, нужно ставить эксперимент. И что дальше? Власти нам обещают, что Белгородская область станет «тепличной столицей России». До 2020 года в регионе планируют создать 500 гектаров тепличных комплексов. В 2012 году региональные власти приняли решение по импортозамещению тепличных овощей продукцией местных производителей. В результате появилась концепция «Тепличный кластер 500 га», разработанная корпорацией «Развитие». Согласно ей, к 2020 году в регионе должны построить 500 гектаров теплиц, чтобы занять не менее 10-12% отечественного рынка производств овощей в закрытом грунте. Реализация этой концепции позволит региону стать «тепличной столицей России». Сейчас специалисты корпорации привлекают в регион инвесторов, в рамках концепции они сопровождают шесть проектов. Самый крупный из них — тепличный комплекс ООО «Гринхаус» Аркадия Абрамовича, сына олигарха Романа Абрамовича. Общая производственная площадь комплекса — 108 гектаров, а объём получаемой продукции — 93 тыс. тонн в год. Сегодня в регионе работают семь тепличных комплексов общей площадью 71 гектар. Ссылка на источник
  3. Более ранние сообщения об этом прогрессивном хозяйстве: http://greentalk.ru/blogs/entry/478-предприятие-по-выращиванию-томатов-начинает-применять-гибридное-освещение/ ; http://greentalk.ru/topic/2313/?do=findComment&comment=34069 и далее. Голландское тепличное хозяйство Ями (Jami) специализируется на выращивании кистевых томатов. Впервые в Голландии в 2013 году здесь в дополнение к уже имеющимся натриевым лампам высокого давления между рядами растений были установлены светодиодные светильники фирмы Филипс. Чтобы рационально использовать возможности собственной когенерационной установки, было решено оснастить светодиодами лишь половину площади теплиц, а именно, 3 га. Поскольку светодиодные светильники значительно дороже традиционных, необходимо получить от них максимальную отдачу в зимние месяцы, в период высоких цен. Больший урожай можно получить за счет увеличения количества стеблей в теплице. Сейчас рассаду высаживают в теплицу на 41 календарной неделе в количестве 2,5 растения/м2. На 43 неделе выпускают первый дополнительный побег и достигают 3,3 побега/м2, а на 47 неделе выпускают дополнительные побеги еще раз и доводят густоту стояния до 4,1 побегов/м2. Агроном и совладелец хозяйства Энди де Йонг считает такую стратегию оптимальной в их условиях. В прошлом году он пробовал выйти на окончательную густоту стояния еще раньше, но последний пасынок рос с трудом. Важно обеспечить равновесие между высокой продуктивностью и достаточной силой роста растений. Другим важным моментом оказалось определение оптимального соотношения между освещенностью и температурой. При повышенной густоте стояния растений изменяется оптимальная среднесуточная температура. Опыт показал, что в первые годы агроном поддерживал слишком высокую среднесуточную температуру для выбранной густоты стояния в период, когда естественная освещенность снижается. В конце концов пришлось очень сильно снизить среднесуточную температуру, чтобы получить достаточно сильные кисти. Владельцы теплицы боялись, что снижение температуры скажется на силе роста, но этого не произошло. Между растениями смонтированы двойные модули лед-светильников, которые нагреваются примерно до 38оС и служат своего рода «ростовой трубой». С течением времени на основании собственного опыта изменилось и количество часов эксплуатации лед-светильников. Сейчас в начале декабря они горят 18 ч в сутки (при высокой густоте стояния растений). К первому декабря растения вырастают настолько, что можно включать все лед-модули. В этом хозяйстве светодиодные светильники установлены на определенной высоте. Кажется, что пока растения маленькие, применение лед-светильников неэффективно. Однако Энди де Йонг считает, что при раннем включении лед-светильников энергия расходуется не зря. По тому, как растения потребляют воду, видно, что они положительно реагируют на леды. Чтобы свет расходовался рационально, в октябре натриевые и светодиодные светильники включают в 4:00. Около 8:00 открывается термоэкран, одновременно выключаются светодиодные светильники. Около 15:00 экран вновь закрывается с оставлением небольших щелей между полотнищами, при этом включаются и леды. В первые годы выращивали гибрид Комеет, но позже перешли на Мерлис. В зимние месяцы Мерлис растет более равномерно, тогда как Комеетe в январе-феврале уже не хватает силы роста. Более сильное, жизнеспособное растение, как и следовало ожидать, дает прибавку урожая. Мерлис более эффективно «перерабатывает свет в урожай». К началу мая заканчивается сезон применения натриевых ламп поскольку становится слишком тепло. Благодаря тому, что светодиоды излучают намного меньше тепла их еще можно применять. В первые годы производители ожидали, что леды потребуются в пасмурные дни, но это не дало прибавки урожая. Более эффективным оказалось применение ледов в утренние часы. Сейчас в летнее время их включают в 5:00, чтобы разогреть растения, сделать их активными. Эффект виден по показаниям весов для определения дозы полива. Продолжительность утреннего досвечивания зависит от актуальных погодных условий, а именно от дефицита водяных паров в воздухе. В яркий солнечный день светильники выключают уже в 9:00, но в «обычную» погоду они горят и до 11:00, бывает, что и до 12:00. Владельцы теплиц довольны установленными двойными модулями светодиодных светильников мощностью 110 микромоль в дополнение к натриевым лампам мощностью 105 микромоль. Однако за прошедшие годы были созданы более эффективные модели светильников. Сегодня Энди де Йонг предпочел бы более мощный одинарный модуль, это снизило бы размер инвестиций. По его мнению, оптимальным вариантов для томата в его условиях были бы 135 микромоль от натриевых ламп над растениями и 75 микромоль от светодиодов между рядами на подвижном подвесе так, чтобы можно было поднимать и опускать светильники в зависимости от высоты растений. Высота подвеса светодиодных модулей очень важна для получения хорошего результата. На самом верху растения располагается цветущая кисть, затем с завязавшимися плодами. Больше всего от межрядного досвечивания выигрывают завязавшиеся кисти с третьей по шестую. В этом промежутке и должны располагаться светодиодные модули, поскольку именно эти плоды должны увеличиваться в размерах. Сейчас в хозяйстве установлены неподвижные двойные модули, поэтому приходится регулировать расположение кистей относительно светильников с помощью приспускания. Это не так просто, бывают случаи, когда растения требуется приспустить на полоборота крючка. Ссылка на источник
  4. О том, чего достигла белорусская наука, и как разработки ученых помогают нашим промышленникам брать новые высоты, мы ежедневно рассказываем в специальной рубрике "Панорамы" "Всем наука". Сегодня новый выпуск. О тех, кто работает на земле, и тех, кто помогает делать этот труд более успешным. Вот уже несколько лет белорусские ученые ведут разработки оптимального освещения тепличных хозяйств, чтобы способствовать лучшему результату независимо от сезона. И уже доказали, что светодиодная лампочка может стать конкурентным преимуществом аграриев, а обладатель правильного света первым получить урожай. О разработках ученых, которые делают зимние овощи с грядки вкусными и спелыми, как летом, смотрите прямо сейчас. Гостей здесь не любят. Наша камера в порядке исключения. Говорят, тепличные растения, как малые дети - легко подхватывают любые болезни. Но к этим гостям теплицы привыкли. Ученые регулярно наблюдают, как плодоносят томаты, фиксируя каждый этап вегетации. Это экспериментальная теплица Минской овощной фабрики. Именно здесь несколько лет назад решились на опыты и… заменили источники света. Нина Болашенко, главный технолог Минской овощной фабрики: "Мы оказались одними из первых, кто в Беларуси начал пользоваться светодиодными лампами. Что мы изучаем? Во-первых, питание растений. Потому что есть несколько факторов, которые очень сильно влияют на развитие и рост растений. Одно из них – это, конечно, влияние светодиодной лампы". Под светодиодами лишь несколько рядов томатов. Все, что рядом, под традиционной натриевой лампой. Такие освещают ярко-желтым светом фонарей и город, и деревню. Свет, к слову, единственное, что отличает опытный участок теплицы от остальной территории. Задача проста – проследить, как освещение влияет на урожай. За результатом годы испытаний. В Центре светодиодных и оптоэлектронных технологий свой опытный участок. Здесь создают идеальный светильник. Во-первых, надежный (прослужит 5-7 лет без замены), во-вторых, экономный (такая лампа потребляет энергии меньше почти на треть) и, наконец, эффективный. Свет подобран так, как любит именно томат. Юрий Трофимов, директор Центра светодиодных и оптоэлектронных технологий НАН Беларуси: "Иногда, когда вечером проезжаешь мимо тепличного комбината, видишь оранжевое зарево. Это столько света отраженного попадает в атмосферу. Конечно, светодиодный свет отличается. Он может быть направлен четко в сторону растения. Нет потерь, ненужных отражений и холостого попадания на растения. Все, что попадает, должно участвовать в фотосинтезе". Людмила Обуховская, ведущий научный сотрудник Института экспериментальной ботаники им. В. Ф. Купревича НАН Беларуси: "Сейчас вы видите последнее поколение светильников. Их можно разместить и сверху, и внутри. Чтобы освещение падало на всю лиственную часть томатов. Когда освещаются они в нижней части, часть света попадает прямо на плоды, которые быстрее созревают". Но кто знает, когда бы светодиод пришел в теплицу, если бы не космос! На рубеже веков свет нового поколения просят космонавты. Верят: он поможет вырастить свежую зелень прямо на орбите! Наука решает и эту задачу. А после приступает к опытам уже на Земле. Именно здесь, в этой лаборатории, такие миниатюрные светодиоды превращают в полноценные светильники, тщательно выверяя качество и количество света. В этом-то и секрет: правильно подобрать спектр света для каждого растения. Ученые уверены: в этом смысле вкусы у культур (будь то томат, огурец или зелень) разные. И от того, как сделать настройки, зависит, как скоро созреет урожай. Опытным путем здесь научились ускорять его созревание на несколько недель. Ученые собирают тепличные данные практически круглый год. Отправляют урожай на весы, замеряют хлорофилл, липиды, сахара. И уверяют: растет не только количество, но и качество томатов. Ольга Молчан, завлабораторией Института экспериментальной ботаники им. В. Ф. Купревича НАН Беларуси:"Они содержат большее количество антиоксидантов. Такого важного антиоксиданта, как ликопин. Они содержат больше сахаров, т. е. они более вкусные, чем при выращивании при традиционном освещении. Там больше сухого вещества. Это значит, что они менее водянистые, более приятные на вкус". Наибольшего эффекта ученые добиваются ранней весной, когда мало солнца, до грунтовых томатов еще далеко, а цены на свежие овощи максимальные. Светодиод сэкономит энергию и снизит фабрике затраты. Себестоимость томата с учетом дорогих энергоресурсов упадет на 30 %. Наука верит: это подспорье, чтобы удешевить белорусский овощ в торговле. Но пока масштабы опытов невелики, потребитель заплатит много, часто выбирая более дешевый привозной урожай. А тем временем ученые продолжают свои эксперименты. Приближают светодиодный свет к естественному – дневному – спектру, начинают аналогичные опыты с салатом и зеленью и собирают мини-теплицы для горожан, чтобы даже холодной зимой каждый, кто верит в силу науки, без труда вырастил томат на своем подоконнике. https://www.tvr.by/
  5. Доброго времени суток всем. Для начала немного о себе, мне 16 лет недавно переехал с города в село. Загорелся огородом и птицей( куры, гуси, перепелы, утки). Под мое хобби мне выделили летнюю кухню, там я держу общим количеством почти сотню разной птицы. Совершенно случайно натолкнулся на новый для меня метод выращивания овощей, гидропоника. После того как я понял что это такое, я решил что было бы неплохо есть свои овощи круглый год. Для этого я сделал стол из палеты размером 120 на 80 сантиметров с возможностью расширения размеров( если эксперимент будет удачным). Хочу попробовать вырастить огурцы. Для этого хочу сделать 4 ряда из 110 пластиковой трубы длинной 1 метр. В трубе делаю 4 дырки под горшки в которых будет расти растение. В трубу буду заливать раствор с заведу трубку с распылителем воздуха от воздушного компрессора. В горшки будет насыпан керамзит. Так же установлю циклический реле времени. Междурядья при таком раскладе будут 30см. Или лучше сделать 3 ряда? Есть ряд вопросов. 1. Подходят ли 12W LED светодиод для подсветки огурцов? 2. Будет ли оказывать положительное влияние на огурцы повышенное содержание СО2 в комнате? ( оно не запредельное, там работает вентиляция). 3. Сработает ли такой способ питания для растения. Раствор будет сделан из Азота, Фосфора, Калия и Железа. А все остальные микроелементы будут подаваться по листу. 4. Как посчитать урожайность на гидропонике? Или это только на практике можно увидеть?
  6. 146 ммоль/с это на верхушке томата? Помогите посчитать светильник из 9(3ряда через 30см) и 16(4ряда через 20см) модулей на квадратный метр.Сколько ммоль/м2/с будет на расстоянии 30,50см от такого светильника.Заранее благодарю.
  7. Добрый вечер ! Сразу предупреждаю - я новичок в тепличном хозяйстве, но немного разбираюсь в светодиодах. В этом году нашёл понимание агронома нашей городской теплицы в вопросе досвечивания огурца. Вместе решили поэкспериментировать. В этом году (февраль) было уже поздно, но тем не менее было организовано пробное досвечивание . Эффект был, но небольшой. Решили попробовать в новом сезоне. Так как работа "за свой счёт" взяли площадь под одной лампой дНат. Главный вопрос: можно ли заменить 600 Вт (дНат) на 200 Вт (бюджетных светодиодов). Вроде хуже не стало и даже второй лист побольше, или я не прав ? У меня будет много вопросов, а также я готов ответить на любые...
  8. Под таким названием 15-17 ноября текущего года в г. Саранске, в здании Национального Исследовательского Мордовского Государственного Университета им. Н.П. Огарёва (ФГБОУ МО «МГУ им. Н.П. Огарёва») был успешно проведен ассоциацией «Теплицы России» очередной инженерный семинар с посещением тепличного комбината ГУП РМ «Тепличное» и завода ООО «Рефлакс» по производству светильников для теплиц. Место проведения было выбрано не случайно: в Республике Мордовия активно поддерживается развитие тепличного овощеводства и тепличный комбинат ГУП РМ «Тепличное» является лидером в Республике по производству экологически безопасной овощной продукции, а завод ООО «Рефлакс» - высокотехнологичным предприятием по производству светильников для ассимиляционного освещения современных теплиц. Посещение этих предприятий вызвало неподдельный интерес у участников семинара. Открыла семинар и приветствовала участников генеральный директор Ассоциации «Теплицы России» Наталия Дмитриевна Рогова. Первый заместитель председателя правительства – министр сельского хозяйства и продовольствия Республики Мордовия Владимир Николаевич Сидоров в своем выступлении о развитии сельского хозяйства в Республике Мордовия отметил, что ведущее предприятие ГУП РМ «Тепличное» – крупнейший поставщик овощей и зеленных культур в регионе, а общая площадь защищенного грунта в Республике занимает более 39 га, из которых площадь промышленных теплиц для круглогодичного выращивания овощей - более 27 га, цветов – 12 га. По итогам 10 месяцев 2017 года объем производства тепличных овощей и зеленных культур превысил 15 тысяч тонн. В своих выступлениях докладчики затронули множество актуальных тем: «Опыт работы по выработке собственной электроэнергии», «Автоматизация и электрификация тепличных комплексов», «Современные технологии и Интернет в управлении микроклиматом в теплице», «Энергосбережение при помощи климатических экранов», «Современные системы электродосвечивания для выращивания растений методом «светокультуры» в современных тепличных комплексах» и других. При проведении семинара возникло много профессиональных дискуссий на самые разнообразные темы: какие выбрать светильники и материалы для зашторивания? стоит ли инвестировать в систему автоматизации учета рабочего времени? насколько выгодны разработки систем электроснабжения, шкафов и пультов управления? как ориентироваться в законодательных тенденциях и получить реальную помощь государства? Поиск ответов на эти и многие другие практические вопросы прошел в атмосфере живого, заинтересованного и конструктивного общения. В семинаре приняли участие руководители, главные специалисты инженерных служб тепличных предприятий, отечественных и зарубежных фирм (всего 125 человек), работающих в области тепличного овощеводства из 32 регионов России и 5 иностранных государств. Ассоциация «Теплицы России» выражает признательность Сергею Михайловичу Вдовину - ректору ФГБОУ МО «МГУ им. Н.П. Огарёва» за гостеприимство и оказание содействия в повышении квалификации специалистов инженерных служб тепличного комплекса России, огромную благодарность: Александру Михайловичу Живаеву, директору ГУП РМ «Тепличное», Владимиру Михайловичу Пчелину, генеральному директору ООО «Рефлакс», Бекшаевой Татьяне Леонидовне, генеральному директору ООО «Рефлакс-С», а также коллективам предприятий за помощь в организации проведения мероприятий в рамках данного семинара. Опубликовано 06.12.2017 Автор Ассоциация «Теплицы России» Категории Семинары и выставки Ссылка на источник
  9. "Невозможно прогнозировать урожайность по мощности досветки в существующей агрономии." Чем мощнее досветка ,тем быстрее происходит созревание и оборот культуры.по итогам года вы получаете не 120кг с м2 ,а 140кг с м2 .(того же огурца),соответственно компетентный работник - профессионал - агроном ,такой прогноз составить сможет для ТК.... и без графити ..ой графика.
  10. Опять у кого-то проблемы с русским языком! Очередную малограмотную кальку "гибридное досвечивание" – hybrid illumination (HPS top, LED interlights) – в название темы исправил на смысловое "комбинированное досвечивание". Также будет корректно "смешанное досвечивание". Полный дословный перевод, по моему, будет слишком длинный для заголовка.
  11. Одно из крупнейших в Голландии хозяйств по производству редиса в теплицах Yilmaz Radijs выращивает его на площади 20 га, расположенных в четырех местах. Владелец этого хозяйства Йылмаз Зюлькуф является предпринимателем, который считает важным внедрять инновации. (В 2016 г. он был признан предпринимателем года в Голландии.) Начиная с июня 2017 г., он совместно с фирмой Stolze (специалист по электрификации, поливу, обогреву и досвечиванию в теплицах) обсуждал возможности применения искусственного освещения, ведь до сих пор этого никто из производителей редиса не делал. Рассмотрев различные возможности и проведя несколько испытаний с лампами высокого давления, Й.Зюлькуф остановился на так называемом гибридном досвечивании – комбинации натриевых ламп и светодиодных светильников. Им были выбраны натриевые лампы фирмы «Агролюкс» и светодиодные светильники фирмы «Филипс» Greenpower LED для верхнего (над верхушками растений) досвечивания. В период недостаточного естественного освещения один цикл выращивания редиса без искусственного досвечивания длится 11-12 недель. Ожидается, что применение гибридного досвечивания сократит это время до 6-7 недель. Другим преимуществом этой системы досвечивания является возможность производить редис высокого качества в течение круглого года. Кроме того, у такого редиса улучшается вкус и возрастает продолжительность периода реализации. В настоящее время гибридное досвечивание установлено на площади 2,5 га в теплице в Гравензанде и используется с 41 календарной недели 2017 г. Если результаты подтвердят ожидания владельца хозяйства, он планирует в течение четырех лет оборудовать такой системой 10 га, а в конечном счете - все 20 га. http://www.fruit-inform.com/
  12. Как и в прошлом году, в рамках Форума по светодиодным технологиям (LED Forum, 7-8 ноября 2017 г., ЦВК «Экспоцентр», Москва), на площадке крупнейшей в России светотехнической выставки Interlight Moscow powered by Light+Building 2017, состоится Круглый стол (08 ноября 2017 г., 14.00-16.00): Технологические «know-how» в применении светодиодов в агропромышленном комплексе. Теплицы Модератор: Л. Прикупец, Руководитель направления тепличного освещения ООО «ВНИСИ» • Актуальные проблемы и новые технологии в современных теплицах. Наталья Рогова, Генеральный директор Ассоциации «Теплицы России» • Вопросы метрики ФАР - важнейший элемент внедрения в практику светодиодного освещения теплиц Леонид Прикупец, Заведующий лабораторией «ВНИСИ им. С.И. Вавилова», Борис Хлевной, Заведующий отделом ФГУП «ВНИИОФИ» • Оценка фотосинтетической фотонной эффективности светодиодов и СОВ-модулей различных производителей. Владислав Терехов, член правления АПСС • Анализ спектральных предпочтений как метод подбора спектра искусственного освещения для растений. Татьяна Тришина, коммерческий директор ФИТЭКС • Экономический фактор в применении светодиодного освещения в теплицах. Владимир Пчелин, Генеральный директор РЕФЛАКС • Пилотные проекты светодиодного освещения салатных линий. Ольга Антипова, Заместитель генерального директора ООО «Агротип» • Новые разработки светодиодов для освещения растений. Михаил Червинский, инженер по применению Cree, Inc. • Тепличное освещение: стандарты, методы и тенденции. Яна Бальцер, Sales & Marketing manager, Viso Systems Aps Официальная страница мероприятия: https://interlight-moscow.ru.messefrankfurt.com/moscow/ru/visitors/special-events/led-forum-2017.html?nc. P.S. Жадность организаторов зашкаливает: стоимость участия – 15 000 рублей (с НДС). Правда, для потребителей светотехнической продукции (архбюро, девелоперы, АПК, ЖКХ, ритейл и т.д.) – специальные условия.
  13. По словам представителя фирмы «Филипс» Риса Нойтебаума, производство томатов в теплицах Бельгии неуклонно растет благодаря применению светодиодных светильников. В опытных теплицах аукциона Хоогстратен на гибриде Мерлис F1 в прошлом году была достигнута урожайность 108 кг/м2. Владельцы теплиц в Бельгии пристально следят за ходом испытаний на опытных станциях. В этом году светодиодные светильники между рядами растений (в ценозе) были установлены на площади 10 га в теплицах, где ранее не применялось досвечивание. В Бельгии владельцы теплиц чаще выбирают светодиодные светильники, чем в Голландии. Хотя светодиоды и не позволяют получить прогнозируемое количество урожая зимой, они обеспечивают более высокое качество продукции и прибавку урожая. По словам Р.Нойтебаума, эксперименты подтверждают это вновь и вновь. Опытный центр в Хоогстратене сейчас проводит испытания при выращивании земляники под 100% лед-досвечиванием, а опытный центр в Синт Кателяйн Вавере испытывает светодиоды при выращивании салата. Высокие урожаи были получены уже четыре года назад, они были настолько высоки, что с трудом верилось. Сейчас результаты опытных центров просто подтверждают ранее полученные данные. В Бельгии в светокультуре зачастую применяют натриевые лампы высокого давления мощностью 180 мкмоль. Если в теплице разместить много таких ламп, повышается температура воздуха, а это не всегда хорошо для растений. Поэтому натриевые лампы обычно дополняют светодиодными светильниками мощностью 55-75 мкмоль, размещенными между растениями. Это позволяет значительно улучшить освещенность растений при соблюдении оптимального микроклимата для растений, что и обеспечивает высокую урожайность. Хорошие результаты от применения ЛЕД-светильников получены и при выращивании огурца, ежевики, роз и альстромерии. Представители фирмы оказывают владельцам теплиц технологическое сопровождение при выращивании культур с использованием светодиодов. При этом они исходят из истории выращивания в хозяйстве до применения светокультуры и потребностей растения (так называемой модели выращивания). На основе этих данных определяется оптимальное количество часов досвечивания и общий «рецепт света». Затем совместно с агрономом разрабатывается прогноз урожая. Зачастую оказывается, что 1 мкмоль дополнительного света от светодиодов обеспечивает в 1,5 раза большую прибавку урожая, чем 1 дополнительный мкмоль света от натриевых ламп. http://www.fruit-inform.com
  14. Интересные светильники, и соотношение цена/мощность хорошие. Теорию обсуждать можно бесконечно, нужно брать и тестировать на реальных растениях, в реальных условиях. В любом случае LED'ы нельзя вешать так же далеко от растений как Днат'ы, а чтобы обе системы разместить поближе, не опасаясь ожогов, наверное, можно использовать системы подвижного освещения.
  15. Я занимаюсь светильниками для теплицы, все равно много клиентов меня спрашивают, что мало площади в домашнем балконе, с каким светильником для досветки? мощность светильника для теплицы слишком высокая, домашняя электр не терпит, но без досветки растения умирают, что делать? а некоторые купили светильники 600Вт, который работает для площади 9-10кв.м, у них балкона только 1 кв.м., это можно сказать роскошно, жалко электра. Бывает такое положение, если дело не касается себя, ленив думать о решении. надавно купил горшок с мясистым суккулентным растением, теперь мне нужно их досветить, натриевая лампа не пойдет, так как у нашего завода минимальная мощность 400вт, рассматриваю, что КМГ лампа пойдет, и собрал в заводе светильник с лампой КМГ 70Вт . Почему использовать КМГ, а не Светодиоды, посмотрим спектр, и поймете: красный и синий очень равномерно, и безперерывный спектр, не отсутствуется UVA. Моя доска высота 62см, померю вертикальный PPFD: 822.62umol/s/m², это не плохо, обычно выше 50 хватает В месте от центра 16см померило 50PPFD, поэтому эффективный диапозон это кругло с радиусом 16см. Эта кривая распределения света отражателя неравномерна, PPFD в центре высокая, а только от 16см быстро снижается, но это я сам собрал, не стандарная, можно повышать ещё выше, чтобы диапозон от центра больше.
  16. Прежде всего, мы сначала понимаем что такое DLI (ежедневный световой интеграл), это должны придумали американцы, я так долго занимаюсь с европейской теплицей, никто не говорил об этом. Буквально, ежедневные световые величины, по сутки, представляют собой количество света, получаемого каждый день. Единица mol/m²/d. Например, PPFD обычно составляет 200 μmol/m²/s, если допустим, что в день свет составляет 16 часов, то в тот день DLI составляет 200μmol/m²/s х16h x3600s = 11520000 μmol/m²/d = 11.52mol/m²/d, Если жизнь томатов от прорастания до урожая, необходимо накопить 1000 mol, кормить его 10mol каждый день, тогда для урожая надо 100 дней, правильно? а если кормить 20mol каждый день? Ваш томат в два раза быстрее других! и, конечно, это теоретически. Фактическая операция в зависимости от разных сезонов, разных растений, чтобы разработать разумный план досветки. Картина А - это цифр DLI в США в декабре, облачная погода 3 mol в день, солнечный день 9 mol, для большинства растений этого пища недостаточно, поэтому придется использоваться искусственный свет для досветки Картина B является DLI в июне США , облачно 12mol в день, достаточно, конечно, может продолжать досветку. Солнечный день 26mol, для тех растений, которые любят свет, это здорово, но некоторые не могут выдержать прямой свет, нужно затенять. выше данные DLI в разных регионах США каждый месяц, кто знает такие данные в России? к сожалению, в китае пока нету таких данных картина A - количество DLI, полученное в день для цветка Vinca, слева направо, 3mol/m²/d,7mol/m²/d,15mol/m²/d,38mol/m²/d картина B - zinnia (название цветка) принимает количество DLI в день, слева направо,4mol/m²/d,14mol/m²/d,24mol/m²/d,48mol/m²/d Заключение: больше кушать, быстрее вырасти Выше показатели, разные растении требуют разные DLI Желтый цвет: минимальный DLI, что держить жизнь Зелёный цвет: нормальное качестно, не плохой, не хороший Красный цвет: высшее качество, например роза, если надо выше качества, тогда обязательно датут красные DLI. И с картины мы понимаем 30 DLI для растений нормально, не вне стандарта, ну конечно есть некоторые не любят так много DLI. давайте вернемся к начальному вопросу, что при случае PPFD 200μmol/m²/s, получается DLI только 11.52mol, как получается DLI 30mol? В общем, PPFD солнечного света намного сильнее, чем искусственный свет, 8 часов свет с солнца днем, вы видите с картины 6, когда Солнечный день получается 26mol DLI, остальная часть досветки в ночи 8 часов, сто процентов больше 30mol DLI. Но снова вопрос: как узнать, сколько DLI составляет 8 часов в течение дня? тогда необходимо купить специальный инструмент, чтобы подсчитать количество накопления света в течение дня, а для тех, которые любят свет, чем больше света, тем лучше растут.
  17. Едва ли найдется в отечественной экономике отрасль, кроме тепличного растениеводства, которая на ближайшие 4-5 лет ставила бы перед собой столь «дерзкие» планы развития. До 2020 года предполагается построить около 1500 га новых теплиц, оснащенных самым современным оборудованием и использующих высокоэффективные технологии. Одной из них является технология светокультуры, позволяющая даже в самые холодные и темные зимние месяцы заменить импортные тепличные овощи с сомнительным пищевым качеством свежей и богатой витаминами экологически чистой отечественной овощной продукцией. При, практически, круглогодичном выращивании, с использованием искусственного освещения в течение 6-7 месяцев в году, в отечественных теплицах уже достигнут и превзойден уровень урожайности основной тепличной культуры, огурца, – 100 кг/м2. Цена, которую за это приходится платить, связана с ростом энергозатрат с (60÷70)∙103 кВт∙ч на 1 га в традиционных теплицах с кратковременным электрическим освещением только в рассадных отделениях до (40÷70)∙105 кВт∙ч при светокультуре, то есть энергозатраты на 1 га возрастают примерно в 60÷100 раз (!). Доля затрат на электроэнергию в себестоимости тепличной продукции может достигать 30÷50%, определяя тем самым особый уровень требований к энергоэффективности используемого в теплицах светотехнического оборудования. Средняя световая отдача современных тепличных светильников достигает 120÷130 люмен/Вт, в то время как у световых приборов для уличного освещения она находится на уровне 70÷75 лм/Вт, светильников для общественных зданий – ~ 50 лм/Вт, а для бытовых светильников – 20÷25 лм/Вт. На рис. 1 показана динамика ввода в России за последние годы новых площадей современных теплиц с технологией светокультуры. По итогам 2015 года площадь теплиц со светокультурой достигла, по нашим оценкам, 360 га; хотелось бы надеяться, что прогноз на 2016 год будет реализован и каждый год в последующие 4-5 лет этот показатель будет только расти. Рис. 1. Строительство овощных теплиц со светокультурой В настоящее время в российских овощных и цветочных теплицах установлено и эксплуатируется порядка 850 тыс. светильников, это значит, что уже в этом году в осветительных установках теплиц заработает миллионный светильник и число световых точек в теплицах составит 20% от общего числа светильников с натриевыми лампами высокого давления (НЛВД), эксплуатируемых в осветительных установках России. На рынке тепличного освещения в России и за рубежом в настоящее время монопольное положение занимают светильники с НЛВД с электромагнитными и электронными пуско-регулирующими аппаратами (ЭмПРА и ЭПРА). Несмотря на успехи светодиодной светотехники и наличие большого числа предложений по светодиодным фитооблучателям, последние в ближайшие годы не смогут оказать серьезную конкуренцию светильникам с НЛВД и будут иметь лишь крайне ограниченное применение. Казалось бы, особенности и основные параметры тепличных НЛВД-светильников с ЭмПРА и ЭПРА известны, хорошо изучены и рассмотрены в [1]. Несмотря на это, с учетом нынешней экономической ситуации и намечаемого «взрывного» характера развития потребностей в тепличных светильниках, мы решили еще раз вернуться к этому вопросу. Разумеется, одним из важнейших параметров конкурирующих типов светильников является их энергоэффективность. Примечание: световая отдача светильников с зеркальными лампами типа «Рефлакс» на 5÷6 % выше. Рис. 2. Энергоэффективность светильников мощностью 250÷1000 Вт На рис. 2 представлены световые отдачи всего ряда тепличных светильников мощностью 250÷1000 Вт. Как видно, для самого массового тепличного светильника мощностью 600 Вт, независимо от типа используемого ПРА, энергоэффективность, практически, одинакова. Это означает, что при заданной установленной мощности осветительной установки, потребляемая мощность и достигаемый уровень освещенности у светильников с ЭмПРА и ЭПРА будут также одинаковы. В случае применения ЭмПРА, независимо от напряжения питающей сети (220 или 380 В) отклонения от номинального значения в большую или меньшую сторону приводят к изменению электрических параметров лампы и светильника. Характерные зависимости приведены на рис. 3 для светильника 600Вт/380В. Рис. 3. Зависимость электрических параметров светильника мощностью 600 Вт/380 В с ЭмПРА от напряжения сети Достаточно сильный характер имеет зависимость мощности лампы от напряжения сети, при изменении последнего на ± 5%, соответственно, ~ на ± 11% изменится энергетическая мощность лампы. За уменьшением или увеличением мощности лампы следует вариация светового потока светильников и, следовательно, уровня освещенности в теплице. Эту закономерность поясняет рис. 4, на котором при выборе условного номинального уровня освещенности в теплице Е=15 клк показано, что понижение Uсети, например до 360В, приводит к снижению освещенности до 13,5 клк, равно как и увеличение Uсети до 400В – к росту освещенности до 16,5 клк. В принципе, имея возможность варьировать выходным напряжением питающего трансформатора, этим можно пользоваться для изменения, в ту или другую сторону, электрической мощности и уровня освещенности в теплице. Рис. 4. Зависимость освещенности от напряжения сети для светильника с ЭмПРА 600Вт/380В У тепличных светильников с ЭПРА мощность и световой поток, а, следовательно, и уровень освещенности в теплице при изменении Uсети в пределах ± 10% остаются, практически, стабильными. Преимуществом светильников с ЭПРА является возможность плавного регулирования мощности и светового потока в пределах – до 50% от номинала с помощью специального блока управления. Компанией ООО «БЛ Групп» созданы системы группового регулирования мощности и светового потока так же для светильников с ЭмПРА, однако из-за высокой стоимости их применение в теплицах в настоящее время пока не рентабельно. Важными параметрами для тепличного светильника, безусловно, являются срок службы и эксплуатационная надежность. На рис. 5 приведены полученные немецкими светотехниками данные по среднему сроку службы основных элементов светильников с ЭмПРА и ЭПРА. Рис. 5. Срок службы основных элементов светильника с НЛВД. Эти данные наглядно показывают, что срок службы светильников с ЭмПРА может в несколько раз превышать срок службы светильника с ЭПРА, поскольку ресурс лишь одного из критических элементов последнего, электролитического конденсатора, в среднем, рассчитан на 5÷6 лет эксплуатации и определяет срок службы всего ЭПРА. Многолетняя эксплуатация светильников с ЭмПРА показывает, что при замене, по необходимости, комплектующего конденсатора и ИЗУ срок службы изделия превышает 10-12 лет. С учетом изложенного гарантийный срок на светильник с ЭмПРА выше, чем для светильника с ЭПРА. Высокая надежность и большой срок службы для тепличных светильников особенно важны для нашей страны с учетом, как правило, значительной удаленности объектов производства и потребления друг от друга. К числу основных характеристик тепличного светильника относится его вес. Вес светильника 600Вт/380В с ЭмПРА находится на уровне ~ 9 кг, а его аналоги с ЭПРА - ~ 4 кг. При удельной электрической мощности осветительной установки Р1=100 Вт/м2 средняя нагрузка на конструкции теплиц составит 1,5 кг/м2, а при Р1=200 Вт/м2 – 3,0 кг/м2, что в несколько раз меньше допустимых нагрузок для теплиц ООО «Агрисовгаз». Отметим также, что «Галад» (ОАО «КЭТЗ») выпускает тепличные светильники с независимым ЭмПРА; в этом случае вес светильника не превышает 1 кг. Как показал практический опыт последнего времени, с учетом гигантских значений потребляемой электрической мощности в теплицах со светокультурой (до 2 МВт и даже более на 1 га) необходимо самым серьезным образом относиться к проблемам, связанным с возможными гармоническими искажениями в питающей сети. Если светильник с ЭмПРА является линейной нагрузкой и не вызывает искажений синусоидальной формы питающего напряжения, то, напротив, светильник с ЭПРА может являться источником образования гармоник, поступающих в сеть. В этом случае важнейшей задачей является разработка практических мер по снижению гармонических искажений до уровней, допустимых по ГОСТ 13109-97. Отметим также, что светильник с ЭПРА чувствителен к помехам из сети, в том числе, и из-за собственных гармонических искажений, напротив, светильник с ЭмПРА к ним, практически, не восприимчив. Большие объемы потребления светильников при светокультуре требуют учета экологических качеств изделий. Укажем в связи с этим, что утилизация отработавших свой ресурс ЭмПРА (сдача для вторичного использования меди и электротехнической стали) способно вернуть потребителю 10÷15% первоначальных затрат на закупку светильников, в то время как утилизация ЭПРА, в принципе, убыточна. К настоящему времени более десятка фирм предлагает тепличному сообществу светодиодные фитооблучатели, в большинстве случаев с излучением в синем и красном диапазонах ФАР. Изделия, как правило, отличаются достаточно высоким профессиональным уровнем качества и дизайна. В них используются, как правило, цветные светодиоды или модули лучших зарубежных производителей, облучатели обладают высокой энергоэффективностью. Впрочем, последнее требует пояснений. Световая система величин, которая используется для измерения излучательных характеристик светильников с НЛВД, не применима для красно-синих светодиодных облучателей. В данном случае пользуются фотонной фотосинтезной системой величин, которая в России пока не стандартизована. Это, разумеется, не мешает экспериментам и пилотным проектам с использованием светодиодных облучателей, однако при выполнении договорных обязательств по поставкам изделий в производственную теплицу способно вызвать юридические сложности. На практике, для перехода от световых величин к фотонным фотосинтезным пользуются соотношением Е, лк = (72÷76)∙ЕФ, мкмоль/м2∙с Это означает, что величина освещенности Е = 22 клк, часто используемая на практике у нас в стране при светокультуре огурца с НЛВД, эквивалентна, примерно, 300 мкмоль/м2∙с. При использовании для этой цели красно-синих светодиодных облучателей необходимый уровень облученности может быть несколько ниже. Насколько – это должно быть установлено экспериментами. Для салатных культур такие данные получены. [2] Светодиодный облучатель достаточно тяжелый световой прибор. Для сравниваемых мощностей его вес будет существенно превышать вес светильника с ЭмПРА. Количественные данные приведены на рис. 6. Рис. 6. Вес тепличных светильников с НЛВД и светодиодами. Но основной причиной, которая препятствует внедрению светодиодных облучателей в производственные теплицы, является, как известно, ценовой фактор. На рис.7 приведены средние оптовые стоимости светодиодных облучателей в зависимости от мощности в течение последних лет. Для сравнения приведены также средние цены 2016 г. светильников «Галад» с ЭмПРА и ЭПРА мощностью 600 Вт. Многократная разница в ценах на светодиодные и натриевые облучатели и выполненные технико-экономические оценки позволяет утверждать, что замена традиционных светильников с НЛВД на светодиодные в настоящее время нерентабельна. Рис. 7. Цены на тепличные светодиодные облучатели в России. Проведенный в статье анализ характеристик конкурирующих типов тепличных светильников подтверждает высокий «рейтинг» конструкций с ЭмПРА. Наиболее востребованным на рынке типопредставителем светильников этого вида является ЖСП30-600-013 на напряжение 380В. Ряд тепличных комбинатов успешно применили этот светильник в 2015 году, предполагается его использование в ряде новых или развивающихся тепличных комбинатах со светокультурой в 2016 году. Завод-изготовитель тепличных светильников «Галад», ОАО «КЭТЗ», проводит модернизацию светильника ЖСП30-600-013. С 2016 года в его конструкции будет использоваться новый компенсирующий конденсатор со сроком службы до 10 лет и гарантией на 3 года. В настоящее время разница в оптовых ценах светильника «Галад» мощностью 600 Вт с ЭПРА, в конструкции которого 100% радиоэлементов зарубежного происхождения и его аналога с ЭмПРА, в котором лишь один элемент, ИЗУ, импортный (ф. Vossloh Schwabe, Германия) составляет 40÷50% в пользу последнего. С учетом изложенного, использование эффективного и надежного светильника с ЭмПРА на настоящем этапе развития теплиц со светокультурой следует считать рациональным подходом. На рис. 8 приведены фото основных типов тепличных светильников «Галад», все типы светильников, кроме светильника мощностью 1000 Вт, выпускаются в модификациях с трубчатыми НЛВД или зеркальными НЛВД «Рефлакс». Рис. 8. Светильники Galad с ЭмПРА и ЭПРА. Л.Б.Прикупец, зав. лаб. ООО «ВНИСИ им. С.И. Вавилова, вед. консультант ООО «БЛ ТРЕЙД», г. Москва Литература. Л.Б. Прикупец «Высокоэффективное светотехническое оборудование для теплиц. Теплицы России», №2, 2007, с. 45-47. Л.Б. Прикупец, А.А. Емелин, И.Г. Тараканов. Светодиодные облучатели: из фитотрона в теплицу. «Теплицы России», №2, 2015, с. 52-56. Ссылка на источник
  18. Сингапурский стартап Packet Greens привлек $1,5 млн на строительство вертикальных гидропонных ферм. Технологии компании позволяют выращивать более 50 видов овощей за короткий срок. При этом объем урожая в пять раз превышает аналогичный показатель на традиционных фермах. Как и американские аналоги MightyVine и Square Roots, сингапурский стартап Packet Greens выращивает овощи в закрытых фермах по принципу гидропоники. Растения не нуждаются в грунте, а все необходимые питательные вещества они получают с водой. Посадки такого типа позволяют выращивать больше урожая на меньшей территории, расходуя при этом меньше воды. Packet Greens разрабатывает фермы площадью 167 кв. м, которые по размеру сопоставимы с четырехкомнатной квартирой. Этого пространства достаточно, чтобы выращивать более 50 различных овощей и получать в 5 раз больше урожая, чем традиционные фермы. При этом, как сообщает Tech in Asia, на процесс выращивания уходит в два раза меньше времени. Растения получают подсветку от светодиодов, а их развитие происходит в полностью контролируемой среде. Благодаря этому на вертикальных фермах чаще всего не используются пестициды. https://hightech.fm/
  19. Имея двадцатилетний опыт производства тепличных светильников ЖСП 64 серии «Флора», а также базируясь на результатах их эксплуатации, инженеры воронежской компании «НФЛ» пришли к выводу, что ключевую роль в надёжности и высокой эффективности системы ассимилятивного освещения теплицы играют все её компоненты, без исключения. Казалось бы, это очевидные истины, которые каждый инженер изучает уже в вузе, но на самом деле, все не так просто… Для начала, рассмотрим отдельно все составляющие такой системы: Светильник; Кабель, соединяющий светильник со щитом управления группой светильников; Конструкции для прокладки данного кабеля («лоток» и различные фитинги, а также соединительные клеммы и коробки); Щит управления группой светильников; Силовой кабель (как правило, подземного проведения), соединяющий щит управления и соответствующий фидер трансформаторной подстанции; Трансформаторная подстанция; Проект системы; Монтаж системы. Светильник – главный элемент всей системы, это очевидно. «НФЛ» производит светильники для ассимилятивного освещения теплиц с 1999 года. На сегодняшний день их выпущено более 2 млн. единиц. Конечно, подобное производство - сложный процесс постоянного технического развития и усовершенствования. Мы, специалисты «НФЛ», давно отказались от выпуска электромагнитных светильников из-за их серьезных недостатков, по сравнению с электронными, в том числе из-за потерь урожайности. Сегодня «НФЛ» производит тепличные светильники исключительно с ЭПРА. Качество светильников непрерывно контролируется и улучшается, поскольку «НФЛ» – производство полного цикла. Кабели (обычные и силовые) обычно проводятся под землей. Будем исходить из условий, что выбранный производитель выпускает подходящий кабель, используя высококачественные материалы, что сечение жил кабеля соответствует заявляемым. Замечу – реалии таковы, что не так просто найти кабельные заводы, качество продукции которых будет полностью удовлетворять нашим требованиям. К тому же, качество кабеля – только часть условий его успешной эксплуатации. Не менее важно - правильность выбора кабеля, профессиональное обеспечение его прокладки и многое другое. Не буду рассказывать о последствиях неправильного выбора сечения кабеля - опытные «тепличники» об этом прекрасно знают, а малоопытные, наверно догадаются. Вот тут-то и выступает на первый план компетентность всего проекта в целом и важность монтажа системы именно «под ключ». При отсутствии же этих двух составляющих, заказчик получает две, а то и три организации, взаимно «кивающие» друг на друга и обвиняющие друг друга в негативных последствиях, мол «один неправильно спроектировал, другой неправильно смонтировал», и так далее… Замечу о системах для прокладки кабеля. Ситуация с ними в принципе аналогична ситуации, описанной выше для кабеля, разве что негативные последствия менее серьезны. Теперь мы подошли еще к одной составляющей системы ассимилятивного освещения теплицы. Приоритетно она стоит практически рядом со светильниками – это щиты управления освещением. По приоритетности пройдемся весьма кратко, так как этот момент прост для понимания и вполне логичен. Система искусственного освещения в пиковые периоды сезона может работать круглосуточно на полную мощность, то есть при 100% нагрузки. Бесспорно, это ясно показывает важность такой позиции как «щит управления» в связанной цепи всей системы и значимость для системы безотказной эксплуатации щитов. Какие здесь могут быть «подводные камни»? При проектировании щитов обязательно нужно учитывать, что они управляют светильниками, имеющими сложные импульсные характеристики. Щиты должны работать в течение длительного времени (иногда по 24 часа в сутки). Кроме того, щит – это изделие, состоящее из комплектующих от нескольких производителей. Поэтому щиты, во-первых, требуют отдельного проекта и наивысшего качества сборки, а во-вторых, для их производства, установки в теплице и подключения необходимы специалисты высокой квалификации. При наличии «компромиссов» по любому из упомянутых пунктов, мы получаем, в лучшем случае, частично неработающую систему. Не буду отнимать у вас время, перечисляя критические моменты в расчёте щитов по току и нагреву, когда учитывается сложность охлаждения внутренних компонентов щитов со степенью защиты IP 66. Отмечу лишь, что нужно помнить - сами щиты могут находиться под действием прямых солнечных лучей. Обращу также внимание на то, что даже комплектующие с мировыми брендами проявляют себя по-разному в экстремальных условиях эксплуатации щитов, не говоря уже о сомнительных комплектующих, поступающих с рынка стран Юго-Восточной Азии. Таким образом, щиты управления освещением в теплице – это сложные устройства. Поэтому, для «НФЛ» - компании, имеющей колоссальный опыт в производстве светильников для теплиц, было логичным решением наладить собственный выпуск щитового оборудования. Тем самым мы подняли надежность системы ассимилятивного освещения на качественно иной уровень. Ранее я упомянул о важности компетентности самого проекта и значимости квалификации исполняющих его специалистов. Сюда же следует добавить пункт о рекомендациях по размещению трансформаторных подстанций, их мощности и т.п. В некоторых реализованных крупных проектах коэффициент загрузки ТП настолько высок, что с учетом сложности работы со светильниками могут быть серьезные проблемы с эксплуатацией всей системы электроснабжения. Дополнительно укажу, что мы разработали фильтры (электронные и электромагнитные) позволяющие, при необходимости, приводить все гармонические и реактивные составляющие электросетей теплиц к требуемым значениям. Подведем итог. В начале этой статьи я намеренно перечислил составляющие элементы системы искусственного освещения в произвольном порядке, чтобы сейчас, вы с очевидностью увидели необходимость поэтапного подхода, его комплексную гармонию. При наличии профессионально выполненного проекта с грамотным расчётом освещённости, качественными светильниками, правильно подобранным кабелем и электрооборудованием, при качественном монтаже в итоге вы имеете долговечную и безотказную систему, что так важно для собственника. Получив от «НФЛ» готовый первоклассный инструмент для выращивания растений в теплице, вы сможете целиком сосредоточиться на производстве продукции, увеличении урожайности и достижении наивысших результатов. Все остальное за вас сделает наша система. Ю.Б. Рабинович, заместитель директора, ведущий направления «Светильники для теплиц» Ссылка на источник
  20. Анонсируется запись на вебинар Филипса о выращивании под светодиодными светильниками. На английском языке. Он состоится 19 апреля в 7:00 по центрально-европейскому времени. Регистрация по ссылке ниже. (жаль, самой не удастся послушать :( ) Webinar: How to grow edible crops with LED Lighting LED lighting technology is being used by more and more growers because of benefits that include faster growth, more flowering and improved coloration. Philips Lighting and GrowerTalks are hosting a webinar to learn how LEDs can improve growth of lettuce, leafy greens, herbs and high-wire tomatoes and cucumbers on Wednesday, April 19, 7:00 p.m. CET / 1:00 p.m. EDT / Noon CDT In this webinar, you’ll learn: The benefits of adding supplemental light to your edible crop growing area Factors to consider when comparing LED to high-pressure sodium The effect of LED blue and red spectrum on crop growth Hosted by Chris Beytes, editor, GrowerTalks/Green Profit and Acres Online. Guest experts are Doug Marlow, Business Development Manager and Erik Stappers, Plant Specialist. Both are with the Horticulture LED Solutions division of Philips Lighting. Please register here: www.ballpublishing.com/webinars Publication date: 4/14/2017
  21. Мероприятия IV Всероссийского светотехнического Форума в Саранске 15-16 марта 2017 г. Конференция по агрофотонике (освещение в сельском хозяйстве)Созданный в 2016 году консорциум «Агрофотоника» представит программу действий по открытию нового рынка для светодиодного освещения. Светодиоды стали ключом к новому этапу создания агрофабрик, не зависящих от времени года, места расположения и размера сельхозугодий.Конференция пройдет в рамках IV Всероссийского светотехнического Форума 15 марта с 15:30 до 18:00 в конференц-зале АУ «Технопарк-Мордовия.Организатор и модератор - Генеральный директор АПСС Евгений Долин.Первая ключевая задача Агрофотоники – собрать доказательную базу. Надо понять, как и на что в растениях воздействует свет определенных длин волн, надо разобраться, какие дозы, какого спектра и в какое время нужны тому или иному растению для получения товарного результата. Главный агроном филиала "Ботанического сада МГУ им. Ломоносова - Аптекарский огород" к.б.н. Ольга Миронова выступит с докладом «Программа научных исследований консорциума "Агрофотоника".Вторая ключевая проблема в Агрофотонике – метрология. Как подтвердить, что установка обеспечивает требуемое количество световой энергии требуемого спектрального состава? Как сертифицировать облучатели? Какие методики измерений надо разработать? О задачах развития средств измерения и нормирования слушателям расскажет Леонид Прикупец, заведующий лабораторией ВНИСИ им. Вавилова. Алексей Панкрашкин, Генеральный директор ООО «Интех-Инжиниринг» (СПб) представит участникам информацию о разработанном им приборе для измерения облученности растений.Разобравшись с программой освещения и измерениями облучателей надо понять, как сконструировать светодиодный облучатель: на отдельных красно-синих СД или иначе? Директор по продвижению ООО «БЛ ТРЕЙД» Владислав Терехов расскажет о формировании спектра фитооблучателя: комбинации цветных светодиодов или синий светодиода с люминофором. Как рассчитать и создать светильник для теплиц выступит представитель компании Cree Inc. (США) Дмитрий Юровских. Завершит конференцию доклад представителя компании «LEDIL» (Финляндия) Сакена Юсупова «Особенности КСС для разных видов тепличного освещения».Информация представлена Ассоциацией Производителей Светодиодов и Систем на их основе - АПСС.Для посещения необходимо зарегистрироваться: http://lighting-forum.ru/register/ !
  22. Фирма Валоя опубликовала заметку о влиянии светодиодного досвечивания на здоровье людей. Переводить некогда, но ввиду важности темы копирую ее здесь полностью на английском. The effect of LED grow lights on human health The rapid increase in the use of LED technology for horticultural lighting applications has also raised discussions regarding the potential human health risks compared to legacy lighting solutions. This is somewhat due to the differences in visual appearance (colour and intensities) of the light in such applications. At a high enough intensity, any type of light regardless of the source, has the potential to harm the eyes or skin through prolonged thermal exposure or photochemical effects of ultraviolet, blue light &/or infrared emissions. Shorter wavelength, higher energy blue light (400nm and 500nm) can cause retina damage through a combination of photochemical action and high intensity. Higher concentration light sources will provide more direct energy and a higher risk. For example, staring at a clear blue sky (scattered blue light) is a low risk, while looking directly at the sun can begin irreversible damage almost immediately. Prolonged direct viewing of bright light sources must always be avoided, especially at short distances. In practice, nobody voluntarily spends any significant time looking directly at an intense light source. Common sense and the natural human instinctive aversion reaction (we instinctively shut our eyes or look away) means that prolonged direct exposure of the eye to a potentially damaging light source will be avoided. Like other lighting technologies, LED grow lights must be checked for photobiological safety according to EN 62471 – the standard for photobiological safety of lamps and lamp systems. This includes thermal and blue light analysis in the spectral range is 200nm to 3000nm. EN 62471 exposure limit classifications represent conditions under which it is believed most people may be repeatedly exposed without adverse health effects. It should be noted that the classification only indicates potential risk. Depending upon use, the risk may not actually become a real hazard. When it comes to human visual perception, what is often forgotten is that “traditional” light sources were never designed or intended specifically for horticulture applications. Historically, artificial light has always been optimised for human visual benefit. LED grow lights on the other hand are specifically designed for the benefit of plants and thus sometimes appear strange to human eyes. Valoya LED grow lights are true wide spectrum lights, meaning they contain bits of all colours from the spectrum, including outside the PAR area, just like the sun. Because of this they appear from white to soft pink which makes them pleasant to work under and makes identifying the colour of plants underneath them easy. A cheap alternative to that, which most LED manufacturers opt for, is using red, blue and white LED chips which result in a strong, piercing pink color, unpleasant to human eyes. In terms of health effects, Valoya LED grow lights are not blue dominant and are classified in the no-risk or lowest risk group. The eye is a complex organ that naturally tries its best to compensate for varying lighting conditions, and LED grow light spectra may not always appear “natural” to humans. If lighting conditions for the human eye change (e.g. going from a LED lit growth environment to natural daylight), colour perception may be temporarily affected while the eye adjusts. This is natural and should not be misinterpreted as possible “damage” from exposure to LED light. In conclusion it can be said that commercially available LED light sources (for horticultural or other applications) can be considered human safe when designed, installed and used in accordance with the applicable standards, regulations and manufacturer’s instructions. Overall, in terms of photobiological safety, LED grow lights have similar characteristics to those of any other lighting technology. Photo credit: Valoya 02/22/2017 - Valoya Research Team
  23. Вот какую интересную систему создал "Philips Lighting" для цветоводческого хозяйства "Karel Bolbloemen". Они ее называют динамическим освещением. В этих светильниках можно изменять состав спектра в зависимости от фазы выращивания растений, в том числе, чтобы добиться более прочных цветоносов. Светильники "GreenPower Dynamic LED" позволяют изменять сочетания цветов (дальний красный, красный, белый и синий) и интенсивность каждого цвета с помощью специальной компьютерной программы. Проведенные исследования показали, что тюльпаны по-разному реагируют на разные цвета спектра. Для производителей тюльпанов, как например, хозяйство Karel Bolbloemen B.V. такое досвечивание предоставляет возможность повысить качество продукции и снизить процент отходов. Кроме того, становится возможным управлять ростом и развитием растений, чтобы обеспечивать максимальный выход продукции к моментам пикового спроса. По словам владельца хозяйства Karel Bolbloemen B.V. Берта Карела, новые светильники Филипса позволяют получать тюльпаны с коротким и компактным стеблем, что делает тюльпаны более "сильными" (я бы сказала, менее рыхлыми, прочными). В хозяйстве "Karel Bolbloemen B.V." многоярусное выращивание было начато в 2011 году. Благодаря этому, хозяйство стало первым в Голландии, осуществившим "внутреннее расширение площади производства". На площади 3000 м2 тюльпаны выращивают в 4 яруса в контейнерах с подтоплением. В первые несколько дней луковицы находятся в темноте до начала прорастания, затем включается LED-досвечиваниеt. Технический монтаж осуществила фирма "Van der Laan". Совмсестно с "Philips Lighting" была разработана программа и техническое решение управления освещением. Publicatiedatum: 17-2-2017 http://www.bpnieuws.nl/artikel/9315/Licht-en-gewas-in-symbiose
  24. Продолжаем тему, первая часть обсуждения здесь: Стоит ли списывать на пенсию светильники с натриевыми лампами высокого давления (ДнаТ)? Целесообразно ли в настоящее время использование ртутных ламп в промышленной теплице? Плюсы, минусы и другие особенности применения светодиодных светильников для теплицы. Спектральный состав света для различных культур лучше обсуждать в специальном разделе. Высказываемся, желательно без флуда и далекого ухода в сторону от данной темы обсуждения.
  25. Единственное что удалось найти из научно-обоснованного относительно спектра для выращивания томата: Светокультура растений. Биофизические и биотехнологические основы. Тихомиров, Шарупич, Лисовский. 2000г. Может кто-нибудь дополнить картину?

×
   Сайт работает на облачном сервере ispserver.ru