Jump to content
ЛиС ФИТО
Sign in to follow this  
Робот

Технологии спасают планету от голода

Rate this topic

Recommended Posts

Как технологии спасают планету от голодаС помощью интеллектуальных комбайнов уже собрали 5 тонн ячменя.
Массовой выпуск такой техники планируют к 2025 году.

По прогнозу ООН, к 2050 году население Земли увеличится до 9 миллиардов. Для того чтобы справиться с увеличением спроса на продукты, уже недостаточно автоматизации агропромышленного сектора. Сельское хозяйство должно совершить качественный рывок, который позволит повысить глобальное производство продуктов питания без заметного увеличения площади сельскохозяйственных земель. Для этого потребуются инновации и новые технологические разработки.

AgTech — инновационное направление в технологическом развитии сельского хозяйства, которое заявило о себе сравнительно недавно — около пяти лет назад. Развитие новых технологий в агропроме произошло благодаря удешевлению производства различных сенсоров, аккумуляторных батарей, снижению стоимости IТ-разработок. Ранее недоступные технологии и бизнес-модели заинтересовали, в свою очередь, инвесторов, что и подтолкнуло к развитию инноваций в сельском хозяйстве.

Технологии прошлого и будущего

До недавних пор сельское хозяйство было наиболее традиционным и устоявшимся сектором экономики. Любые нововведения приживались здесь медленно, технологические циклы были слишком длинными. А 300 лет назад сельское хозяйство было основой экономики — в 1870 году почти половина занятого населения трудилась на рабочих места в сельском хозяйстве. Сегодня эта индустрия, например, в США, занимает объем инвестиций в 3 триллиона долларов, но только 2% американцев работают в агропромышленной отрасли. И все благодаря развитию технологий прогресса: техника в XX веке позволила крупным фермам избавиться от большого числа людей на полях и фермах — достаточно несколько человек, чтобы управлять всей техникой.

Дункан Логан, основатель и главный исполнительный директор компании RocketSpace, прокомментировал рост технологических стартапов в агросекторе: «Сегодня даже сельскохозяйственные угодья не защищены от информационной революции. В мире ежедневно появляются десятки новых технологических стартапов, и ситуация напоминает первые дни появления интернета — они проявляют много активности, но пока не ясно, кто же в итоге станет Facebook или Amazon в агротехинновациях. При этом нельзя игнорировать три факта, влияющих на наше будущее: климатические изменения, прирост двух миллиардов населения планеты и ограниченные земельные ресурсы могут столкнуть людей с недостатком продуктов и питания. А это значит, что есть задача, которую нужно решить к этому моменту, и инвестиции в сельское хозяйство — вот что сейчас необходимо для развития технологий в этом секторе».

Дроны и космические технологии помогают агрономам

Для того чтобы увеличить урожайность, необходимо постоянно мониторить и получать достоверную информацию о том, что происходит в каждом отдельном секторе полей и фермерских угодий. На сегодняшний день есть несколько методов сбора информации с воздуха — это спутниковый мониторинг, мониторинг при помощи классической авиации и беспилотных аппаратов. Спутники давно работают на службе сельского хозяйства. Их задача — отследить неблагоприятные условия: погодные изменения, пожары. А также выявить зарождающиеся очаги нападения на урожаи насекомых и вредителей. То, что может ускользнуть от человеческого взгляда, не пройдет мимо цифровой диагностики и зоркого глаза видеокамер и различный сверхчувствительных датчиков, установленных на спутниковых системах. Спутники позволили перейти от интуитивного к точечному и прецизионному земледелию, с помощью которого можно экономно и рационально использовать возможности земельных ресурсов.

Если ранее спутники были рассчитаны только на большие участки посевов, то сегодня с помощью IT-технологий им по силам производить и диагностику садов, вести мониторинг состояния каждого дерева в отдельности. Компания AGERpoint из США разработала спутниковое программное обеспечение GroveTracker и VitalityTracke, которое способно отслеживать любые изменения в ореховых и цитрусовых садах. Спутниковые данные достаточно детализированы, чтобы дать подробную картинку и информацию по каждому дереву: размер кроны, диаметр ствола, состояние плодов и какие на нем происходят неблагоприятные процессы.

Добавив к аэрокосмическим инструментам геоинформационные технологии (электронные карты, компьютерные программы обработки получаемой видеоинформации), способные работать с использованием облачного интернета, таким образом можно получить не только данные для диагностики «точного земледелия», но и вторую, не менее важную, — рекомендательную составляющую. И здесь уже вступают в работу IT-системы, оснащенные искусственным интеллектом, способным обрабатывать большие массивы данных и выдавать рекомендации для агрономов, которые принимают на их основе решения.

Все больше пользы для сельского хозяйства приносят беспилотные летательные аппараты — дроны. Сбор данных с дронов является самым эффективным и наиболее доступным методом воздушного мониторинга, хотя нередко используется и в комбинации с бесплатными спутниковыми снимками. В сельском хозяйстве дроны используют для различных задач:

  • Анализ состояния почв. Дроны можно задействовать в самом начале цикла урожая. Они способны создавать точные трехмерные карты для начального анализа почвы, что важно при разработке планов посадки семян. Этот анализ позволяет получить данные для управления орошением и содержанием азота в почве.

  • Высадка семян с помощью дронов на 80% снижает затраты на этот процесс. Дроны зависают над грядками и выстреливают глубоко в почву капсулами с семенами и питательными веществами.

  • Опрыскивание урожая. Дроны в состоянии своевременно и точечно вносить удобрения, не засоряя землю излишними химикатами. Посредством ультразвуковой эхолокации дроны регулируют высоту полета, сканируют местность и равномерно распыляют необходимое количество агрохимикатов и пестицидов.

  • Полив. Датчики на дронах выявляют высохшие и нуждающиеся в инсектицидной обработке участки. Правда, пока для полива всего поля грузоподъемности дронов недостаточно — они могут поднимать до 200 кг, а для орошения среднего поля потребуется около 2 тысяч литров воды.

  • Поделка грядок. Дроны позволяют выполнять вертикальное профилирование полей — «воздушный» мониторинг изменений состояния качества угодий помогает дать точную оценку принятым решениям и осуществить, при необходимости, нарезку гребней.

  • Мониторинг полей и посевов. Сегодня слежение за полями осуществляется при помощи пилотируемых самолетов и даже простого обхода полей с измерительными приборами, что забирает много времени и ресурсов. Мониторинг с использованием дронов позволяет фермерам видеть, что происходит на полях и посевах, получая информацию на экран смартфона или сотового телефона: оперативно поступает информация, на каких участках растения нуждаются в большем поливе, атаковали ли вредители, необходима ли подкормка удобрениями.

 

  • Сбор и обработка информации для планирования следующих посевов. Благодаря дронам можно гораздо быстрее собирать и обрабатывать большее количество информации, что увеличивает прибыльность и урожайность. Существует много программных продуктов, которые предлагают функционал для обработки такой информации. К примеру, специалисты украинской компании DroneUA, — по версии Forbes компания вошла в ТОР-3 наиболее инновационных предприятий в агрокомплексе Украины, — разработали программный продукт Pix4D, который позволяет использование ручного контроля процессов на каждом этапе обработки данных для увеличения точности; делает возможным учет особенностей различных спектральных сенсоров; создает радиометрические и геометрически точные индексные карты; к программному продукту прилагается приложение для полетов, которое добавляет легкость в использовании. 

К плюсам применения дронов можно отнести точность, экономию времени, сокращение затрат на топливо для техники, приток молодых квалифицированных специалистов в отрасль сельского хозяйства. Но и минусы тоже присутствуют: большие капиталовложения и погодные условия также влияют на работу дронов. Но это обещают исправить в ближайшем будущем, сократив стоимость дронов за счет массового выпуска и разработав новые модели, которым не страшны сильный ветер, ливни и град.

Роботы и беспилотные комбайны

Сбор урожая, который не терпит крупной техники, по сей день доверяют человеческим рукам. Сбор клубники и других ягод, овощей на полях и в теплицах, а также плодов с деревьев до недавнего времени был делом наемных сезонных работников. Человеческий труд при сборе урожая довольно тяжелый и изматывающий, плюс в цивилизованных странах он становится все дороже и дороже. Компании Google Ventures и Yamaha Motor Ventures вложили $10 млн инвестиций в американский стартап Abundant Robotics, который создает роботов для сбора яблок. В Германии уже давно решили, что пора ввести и в эту сферу сельского хозяйства наземных роботов, которые выполняют точные и ювелирные задачи. Специалисты из Института Фраунгофера по промышленным системам и проектированию технологий (Fraunhofer Institute for Production Systems and Design Technology) разрабатывают робота, способного осуществлять сбор огурцов (и выполнять ряд других похожих агрокультурных задач). Робот оснащен двуручной роботизированной системой, состоящей из легких модулей, которая способна отбирать созревшие огурцы и использовать руки с захватом, чтобы аккуратно срывать их и складывать, причиняя минимум вреда овощу или растению. При этом скорость уборки огурцов у робота не меньше человеческих показателей — 13 огурцов в минуту, а иногда даже превышает их. Робот оснащен программным обеспечением, которое было разработано для гуманоидного индустриального робота Workbot I. Кроме того, робот-сборщик огурцов использует оптическое и тактильное считывание с помощью многоспектральных камер, связанных с «умной» системой обработки изображений. Таким образом робот может отделять огурцы от стеблей и листьев растений и делает это с 95%-й точностью.

Еще одно перспективное направление — беспилотная наземная техника, которая быстрее появится на полях, чем на автострадах. Причины тому просты: для того чтобы запустить комбайн с автопилотом на поле, не нужно преодолевать законодательные барьеры, связанные с регулированием ответственности участников движения. Процесс движения по полю в уровне сложности не сравнится с движением в городе. На поле нет ни пешеходов, ни пробок, ни встречных полос, ни перекрестков. Также здесь значительно меньше вероятность возникновения опасных и внештатных ситуаций. К тому же сельхозтехнике не требуется сертификация транспортных средств для проведения испытаний, что существенно снижает цикл доведения разработки до промышленного образца.

Но отсутствие регулирования в создании беспилотной сельхозтехники не отменяет сложности такой задачи. Ведь нужно создать полностью автономный комбайн, в котором водитель не вмешивается в процесс управления на протяжении всей работы. Но такие системы уже создаются сегодня. На первой в мире роботизированной ферме Hand Free Hectare, расположенной в деревне Эдгмонд в Великобритании, исследователям из Университета Харпера Адамса удалось собрать около 5 тонн ярового ячменя. По словам разработчиков фермы, все, от начала до конца, — включая посев, удобрение, пробы почв и сбор урожая, — было сделано автономными фермерскими машинами. Команда этого уникального проекта утверждает, что роботизированные технологии могут улучшить урожайность в сельском хозяйстве, что необходимо, чтобы обеспечить питанием в ближайшие годы растущее население мира. Разработчики планируют массовый выпуск интеллектуальных комбайнов к 2025 году.

Умные фермы и теплицы

Выращивание овощей и фруктов высокого качества в теплицах — достаточно прибыльный бизнес, особенно в больших масштабах. Голландцы — признанные лидеры в применении новейших технологий в сельском хозяйстве, которое приносит львиную долю ВВП этой страны. Десять лет назад была принята новая сельскохозяйственная политика страны. Сегодня голландские фермеры живут под девизом «Производи в два раза больше за половину доступных ресурсов». Неудивительно, что передовые тепличные разработки распространяются по миру именно отсюда. Для этого был создан целый исследовательский центр Wageningen UR Greenhouse Horticulture, который занимается изучением взаимосвязи между климатическими факторами и ростом растений, их производством и качеством. И на сегодня одна из главных задач центра — минимизировать затраты на содержание теплиц и в то же время увеличить в них урожайность.

Климат и потребление энергии в теплице взаимосвязаны. Малейшие колебания влияют на потребление энергии и наоборот. Более того, все изменения климата, будь то связанные с освещением, температурой или влажностью, влияют на урожайность и качество продукта. Для того чтобы достичь максимальных урожаев, разработчики дополнили теплицы датчиками и материалами, а также программным обеспечением, которое контролирует процесс выращивания в кондиционированных теплицах. С помощью новых технологий и достигается минимизация затрат на поддержание оптимальных показателей микроклимата.

Если посмотреть на Голландию сверху, кроме городов и лоскутов полей можно увидеть необычные теплицы, напоминающие зеркала, которые днем сверкают на солнце, ночью излучают внутреннее свечение. Так выглядят нидерландские тепличные комплексы, причем площадь некоторых из них достигает 70 гектаров. Один из таких гигантских комплексов принадлежит семейству Дюжвестижн — здесь кусты помидоров больше напоминают виноградную лозу, а корни уходят не в землю, а в специальные волокна из базальта и мела. Тепличное хозяйство автономное: оно само вырабатывает практически всю необходимую энергию и удобрения. В теплице круглый год поддерживается оптимальная температура — тепло добывается из геотермальных вод, которые протекают под половиной площади Нидерландов. Здесь выращивается около 15 разных сортов помидоров. В 2015 году международное жюри агропромышленных экспертов признало тепличное хозяйство Дюжвестижнов самой автономной фермой по выращиванию томатов в мире.

Но теплицы могут в скором времени уйти в прошлое. Сегодня огромные инвестиции направлены на развитие так называемых «умных ферм», которые обладают суперэкономичными показателями и требуют меньшего количества земельных ресурсов. «Современное техническое пространство находится в уникальном положении, — говорит вице-президент по развитию бизнеса американской компании AgTech Accelerator Corp Кори Хак. — Мы должны увеличить производство урожая, ограничив использование земельных ресурсов и минимизировав затраты по пресной воде — 70% пресной воды уже используется в сельском хозяйстве. И единственный способ этого достичь — использовать новые технологии».

Компания Plenty из Сан-Франциско создала пластиковые стеллажи высотой до шести метров, в которых выращиваются зелень и салаты. Растения высаживаются не в почву, а в губчатое вещество, которое ее заменяет. Поливают их водой, обогащенной минералами. На «умных фермах» можно выращивать любые культуры, кроме корнеплодов и плодов. Урожайность таких ферм в 350 раз выше, чем у обычных полей. Глава Plenty Мэтт Барнард сказал, что компания собирается изменить подход к выращиванию продуктов питания, и в то же время снизить их себестоимость и конечную потребительскую цену. К тому же руководство компании хочет создать всемирную фермерскую сеть, чтобы поставлять свежие продукты на стол потребителя в течение нескольких часов, после того как они были собраны на ферме. Такие амбициозные планы заинтересовали инвесторов. Первым миллиардером, который заинтересовался «умными фермами», стал Масаеси Соном — первый в рейтинге-50 самых богатых людей Японии по версии Forbes. Его технологический инвестиционный фонд SoftBank Vision уже вложил в компанию умного фермерского комплекса Plenty $200 млн. К японскому бизнесмену присоединился генеральный директор Amazon.com Джефф Безос. Такие смелые инвестиции говорят о том, что у подобных проектов есть серьезное будущее.

Во всем мире сельхозпроизводители активно внедряют инновации, хотя эту часть промышленности сложно назвать самой передовой. Сельскохозяйственный рынок довольно специфичен: деньги, вкладываемые в его развитие, подвержены огромным рискам — погодные катаклизмы, вредители, инфляция и ценовые риски, а также человеческий фактор увеличивают сроки окупаемости дорогостоящих вложений. Пока что лидерами в развитии AgTech являются американские, израильские, голландские и другие западные компании. Но все мы видим, что через пару лет после появления на свет новые технологии неизбежно приходят и на наши рынки. И несмотря на то, что украинский агросектор достаточно неоднородный, в Украине с каждым годом появляется все больше стартапов, заинтересованных в решении проблем агросектора — как в управлении землей и логистикой, так и в планировании агропроизводства. И для успешного развития им необходимо участие в международных форумах, акселераторах, грантах и стипендиальных программах, которые позволят найти выход на западные инвестиционные рынки и развиться в крупные компании.

Ссылка на источник

Edited by Редактор

Share this post


Link to post

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By Редактор
      Одним из принципов энергосберегающего тепличного хозяйства является оптимальное распределение ассимилятов в растении, при этом большая их часть должна попасть в плоды. Процесс фотосинтеза возможен только за счет световой энергии, а свет зачастую является лимитирующим фактором. Единственным способом определения, сколько ассимилятов образовалось и как они распределились, является отбор образцов листьев и их анализ в лаборатории.
      Понятно, что пока это возможно лишь в проведении исследований, а не в промышленных хозяйствах. Голландские ученые из университета в Вагенингене в рамках проекта «Управление микроклиматом на основе состава листьев» применяют гиперспектральные камеры, облучающие листья светом в диапазоне 400-1700 нм. Это позволяет отслеживать состояние растений по беспроводному каналу и на основе этой информации контролировать микроклимат в теплице (дозирование CO2, включение или выключение освещения) или меры по уходу за растениями (удаление листьев, обрезка).
      В данном исследовании участвовали пять гибридов томата, которые выращивали в промышленной теплице. От каждого гибрида было отобрано 100 листьев и плодов разного возраста и степени зрелости. Проведение различных вариантов агротехнических мероприятий позволило получить различное содержание сухого вещества и сахаров в листьях и плодах, а также различное содержание в них элементов питания. Затем были проведены измерения с помощью гиперспектральной камеры, а после этого и лабораторные анализы содержания сахаров, крахмала, отдельных элементов питания, содержания сухого вещества и хлорофилла в различных лабораториях.
      Для каждого листа и плода были созданы спектральные изображения, которые сравнили с результатами лабораторных анализов, чтобы можно было определить корреляцию между изображением и содержанием отдельных веществ. Оказалось, что гиперспектральные изображения хорошо коррелируют с содержанием сахаров в листьях. Кроме того, они хорошо коррелируют с содержанием сухого вещества и пигментов (хлорофилла и каротиноидов) в листьях. Однако корреляция между изображениями и содержанием крахмала, общего азота и кальция была на среднем уровне, а содержание ряда других соединений и элементов питания оценить этим способом практически не удалось.
      Тем не менее с помощью гиперспектральной камеры удается хорошо определять содержание сахаров и кислот, которые определяют вкус томатов. Эти результаты показывают, что гиперспектральные камеры могут быть использованы для определения состояния растений и качества плодов без повреждения самих растений. На следующем этапе исследования надо определить, возможно ли применение гиперспектральных камер на практике в коммерческих теплицах для определения содержания питательных веществ в растении с тем, чтобы помочь агроному управлять растением. Ученые предполагают, что благодаря регулярному проведению измерений агроному будет легче определить момент, когда и сколько листьев следует удалить, как управлять энергосберегающими и затеняющими экранами или изменять настройки микроклимата.
      http://www.groentennieuws.nl/
    • By Редактор
      Измельчитель растительных остатков обрабатывает до 3500 м2 теплицы в час
      В ноябре и декабре в большинстве тепличных хозяйств проводится смена культурооборота. Это означает, что в хозяйствах приходится затрачивать много сил и труда на удаление растительных остатков перед очисткой и дезинфекцией теплиц.
      Голландская фирма «Bio Bull» создала машину под названием «Bio Bull CS 140», которая предназначана для измельчения растительных остатков непосредственно в теплице перед вывозом их на компостную площадку или на свалку. Производительность этой машины достигает 2000-3500 м2 в час (в Голландии ее предлагает фирма Хортмат (Hortimat).

      Этот измельчитель предназначен для теплиц площадью от 0 до 50 000 м2. Для крупных хозяйств эта фирма производит более мощные машины. Измельчитель «Bio Bull CS 140» чаще всего применяется в хозяйствах по выращиванию сладкого перца, томата и огурца.

      Большой загрузочный бункер обеспечивает равномерное поступление растительных остатков в сам измельчитель. Машина оснащена профессиональным транспортером на выходе и более мощным двигателем, чем у аналогичных машин других производителей. Поскольку машина управляется только дистанционно, она обеспечивает максимальную безопасность для людей. Блок измельчения также полностью экранирован и оснащен аварийной остановкой.

      Фирма «Bio Bull» уже 15 лет производит машины для измельчения и удаления растительных остатков на собственной фабрике, поэтому может гарантировать их качество.
      http://www.groentennieuws.nl/
    • By Редактор
      Кислород, растворенный в питательном или почвенном растворе, выполняет ряд функций.  Агрономы зачастую забывают о том, что именно кислород помогает растениям усваивать элементы питания через корни. Растворенный кислород - это механизм, который позволяет питательным веществам всасываться через корневую мембрану.
      По словам Денниса Кларка, представителя фирмы «O2 Grow», при недостаточном уровне содержания кислорода растения останавливаются в росте. Доказано, что повышение содержания кислорода в зоне корней предупреждает ситуации, когда вода и элементы питания не попадают в растение, хотя и подаются ему в достаточном количестве.  

       По словам Денниса Кларка, измеритель растворенного кислорода является таким же необходимым инструментом агронома, как измеритель рН и кондуктометр. Только измеряя содержание растворенного кислорода, агроном может знать, достаточно ли его в растворе.
      Обычно содержание растворенного кислорода измеряется в мг/л или в ппм (часть на миллион, 1 мг/л = 1 ппм). Для большинства растений необходимо содержание растворенного кислорода на уровне 6 ппм, но его содержание в воде многих источников не превышает 2 ппм. Ученые университета в Миннесоте (США) доказали, что содержание растворенного кислорода выше 10 ппм стимулируют ускоренный рост благодаря более развитой и устойчивой корневой системе.
      Здоровая корневая система помогает растению успешнее сопротивляться инфекционным и непаразитарным заболеваниям, характерным для низкого содержания кислорода в зоне корней. Это особенно важно при выращивании растений в гидропонике.
      Ученые университетов штатов Миннесота и Висконсин (США) наблюдали увеличение количества плодов перца и увеличение массы корней и цветочных почек сахарного гороха при выращивании его по методу NFT. Кроме того, было замечено увеличение зеленой массы растений.

       Аппарат под названием O2 Grow обогащает питательный раствор кислородом, получаемым в процессе электролиза. В результате образуются крохотные (нано) пузырьки кислорода, которые слишком малы, чтобы преодолеть силу поверхностного натяжения воды, поэтому остаются в растворе. Этот процесс позволяет обогатить раствор кислородом до его полного насыщения.
      Измерения показывают, что при температуре воды 20оС она способна удержать 14-16 ппм кислорода. Аппарат «O2 Grow» позволяет быстро и эффективно насытить воду кислородом, потребляя при этом мало энергии. Он может работать от аккумулятора или солнечной батареи.
      Компактный аппарат работает практически бесшумно. Аппараты созданы с учетом величины резервуаров для воды, в США они варьируют от 10 до 250 галлонов (38-946 л). Для обогащения воды кислородом достаточно погрузить эмиттеры в воду и включить аппарат. Поскольку для поддержания определенного уровня содержания кислорода не требуется непрерывная работы аппарата, многие производители в США предпочитают включать и выключать аппарат с помощью таймера, получая обогащенный кислородом питательный раствор к моменту его использования.

      Аппарат O2 Grow можно использовать не только в гидропонике, но и при выращивании растений в почве, как в открытом, так и в защищенном грунте.  Величина аппарата зависит от величины резервуара для воды. Важно, что фирмой созданы аппараты специально для метода выращивания растений в бассейне на плотах (так называемый метод глубокого слоя (DWC).
      http://www.hortidaily.com/
    • By Редактор
      По словам Нины Ханссен, представителя голландской фирмы H2O Technics, их разработки позволяют дезинфицировать воду во всех отраслях ее применения, в т.ч. в тепличном хозяйстве. Дезинфекция воды с помощью нанокавитации является нехимическим методом, поэтому полностью дружественна по отношению к окружающей среде. Нанокавитация – это процесс, при котором микроскопические вибрации воздействуют на микроорганизмы в воде. Сама технология не нова, но способ ее применения, созданный фирмой H2O Technics, является инновацией.
       
      Аппараты C-Dome и V-Dome
      Эта голландская семейная фирма организована в 2016 г. и совсем молода в отличие от процесса нанокавитации, применяемого с 1988 г. Фирма H2O Technics разрабатывает новые способы применения этого процесса. Эксперименты в тепличных хозяйствах показали, что нанокавитация очень эффективна в борьбе с фузариумом и питиумом, вызывающим корневые гнили.
      В собственном производственном цехе создаются резонаторы, вызывающие микроскопические колебания воды. Нежелательные микроорганизмы погибают, что делает ненужным применение химических дезинфектантов. По словам Н.Ханссен, фирма продолжает испытывать и развивать свои разработки, поэтому даже если удастся снизить применение химических средств хотя бы наполовину, это уже принесет прибыль.
      В настоящее время фирма H2O Technics предлагает на рынке две новинки. Аппарат Церинн (Zerinn) предотвращает развитие легионеллы в системах водоснабжения, а плавающий аппарат C-Dome предотвращает размножение микроорганизмов и биопленки (накопления водорослей и микроорганизмов на влажных поверхностях) внутри водопроводов.
       
      На фото установка для очистки воды, разработанная совместно с фирмой De Hoog Techniek, специализирующейся на системах водоснабжения и электрификации тепличных хозяйств. Резонатор является составной частью этой установки.
      Эта технология уже несколько лет применяется в прудах, но C-Dome можно использовать и в бассейнах. В настоящее время один такой аппарат применяется для очистки воды в хозяйстве по выращиванию салата в бассейнах на плотах. Ее используют и в аквапонике. Можно сказать, что фирма H2O Technics предлагает решение проблем индивидуально для каждого хозяйства.
      https://www.fruit-inform.com/
Пользовательский поиск





×
×
  • Create New...