Перейти к содержимому
ЛиС ФИТО

Оцените эту тему

Recommended Posts

Интересует прибор LASA AGRO 3900. Конкретнее - анализ на молибден. Подскажите кто как делает... выдает неправильный результат((

Поделиться сообщением


Ссылка на сообщение

Здравствуйте, Елена. Анализ микроэлементов, а тем более таких сложных я доверяю только аккредитованным лабораториям - и только таким приборам атомно-адсорбционные спектрометры, даже определение натрия и калия я бы не в коем случае не доверила такому прибору как LASA AGRO -3900, это не плохой прибор для определения , макроэлементов. Как подработались по методу определения молибдена? Что вас напрягает в его результатах, пример возьмите точное  расчетное количество молибдена - растворите в дистиллированной воде, а потом сделайте кратные разведения этого раствора и попробуйте сопоставить результат анализа и расчеты. используете ли вы ГСО в этом методе определения молибдена?

 

Поделиться сообщением


Ссылка на сообщение

Создайте аккаунт или войдите для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Зарегистрировать аккаунт

Войти

Уже зарегистрированы? Войдите здесь.

Войти сейчас
Войти  


  • Похожие публикации

    • Автор: Игорь .
      Если при выращивании на гидропонике измерение ph и EC в выжимке из субстрата общепринято, то при выращивании в грунте многие фермеры не контролируют эти параметры в почвенном растворе. Это несколько сложнее, чем просто опустить прибор в жидкость и снять показания. Есть разные методики измерения параметров почвенного раствора, но во всех учебниках упоминают способ извлечения почвенного раствора с помощью пресса. На первый взгляд это сложно и требует дорогого оборудования. На самом деле , имея некривые руки и пару железок, можно за несколько часов собрать гидравлический пресс из автомобильного домкрата. Кастрюлька с отверстиями стоит на поддоне, в который собирается раствор. Образец почвы заворачиваем в ткань, промытую дистиллированной водой и выжимаем раствор. Образец отбираем всегда одним способом, скажем через три часа после подкормки. Из трёх литров почвы легко получается примерно 50 мл раствора, что вполне достаточно для измерения ph и EC. В отличие от разных вытяжек это прямой способ, результаты хорошо совпадают с лабораторными. Точнее, лабораторные измерения хорошо совпадают с этим прямым методом.
       
    • Автор: Игорь .
      (1:2 volume water extract method)
      В одной из работ Зонненвельда упоминается, что этот метод объёмного водного экстракта 1:2 был разработан японцами в конце шестидесятых годов. Той первой статьи в интернете не нашлось. В семидесятые метод  активно исследовали голландцы, сошлись на том, что он неплох, довольно точен. Метод хорошо работает при выращивании с помощью фертигации и капельного полива в теплицах и открытом грунте, когда питательные вещества вносятся с поливной водой достаточно интенсивно, и контроль за их внесением ведётся через контроль состава почвенного раствора. Считается, что при такой интенсивной технологии основное питание растения получают через почвенный раствор и обычный метод анализа почвы не очень подходит. В литературе отмечается, что метод прост, хорошо подходит для регулярного контроля почвы, пригоден для широкого круга почв, используется многие годы. По микроэлементами точность не очень высока, по фосфору тоже (завышает вроде бы раза в два) .
      Общепринятого канонического описания метода как, скажем,  в  советских Гостах, нет. Поэтому в разных местах могут встречаться вариации (время вытяжки разное пишут). На основании описания в ранних научных работах метод объёмного водного экстракта 1:2 выглядит так:
       В мерный цилиндр наливаем два объёма дистиллированной воды (скажем, 2 по 50 мл=100 мл) и досыпаем почву нормальной полевой влажности до трёх объёмов (до 150 мл). Эта тонкость, когда мы насыпаем почву в воду, а не отмеряем её по объёму отдельно, позволяет устранить погрешность, связанную с разной пористостью образцов. Затем перемешиваем 20 минут, процеживаем через бумажный фильтр и отправляем на анализ.
      В полученном образце мы можем измерить  Ес, ph, и сделать анализ на интересующие нас макро и микроэлементы. Надо понимать, что эти измерения относятся к нашему образцу, а не к интересующему нас почвенному раствору. Если ph образца можно считать равной ph почвенного раствора, разница там невелика, то Ес и данные анализа надо пересчитать на почвенный раствор, ведь мы при приготовлении вытяжки разбавили почвенный раствор, содержащийся в образце на некий коэффициент разбавления, который надо рассчитать.
      Определение коэффициента  разбавления.
      Это можно сделать через влажность образца. Наш образец  разделяем на две части, одну используем для получения экстракта, другую для определения влажности. Для упрощения считаем 1 грамм жидкости равным 1 мл. (формулы ниже на основе одной голландской работы, но физический смысл коэффициента разбавления и так достаточно очевиден, это отношение всей жидкости в экстракте к жидкости, содержащейся в образце почвы )


      Определение влажности (W):
      Взвешиваем 100 гр почвы, затем высушиваем в микроволновке, насыпав тонким слоем в блюдце за несколько заходов по 2-3 минуты. Опять взвешиваем, вычисляем влажность по формуле выше.

      Определение коэффициента разбавления (Kр): 
      Вычисляем по формуле выше.
      Массу образца ( Мобр.э) в граммах определяем при приготовлении экстракта: мерный цилиндр с двумя объёмами воды ставим на весы и обнуляем показания. Досыпаем почвы до трёх объёмов и считываем вес. Объём добавленной воды V доб- объём в миллилитрах двух наших объёмов.

      Данные из лаборатории с содержанием элементов питания в нашем экстракте умножаем на коэффициент разбавления и получаем содержание элементов питания в почвенном растворе. То же и с Ес, умножаем  Ес экстракта  на коэффициент и получаем Ес почвенного раствора. Для Ес есть более точная эмпирическая формула Зонненвельда, но поправка там невелика. Наши лаборатории дают результаты в миллиграммах на литр, в программе для расчёта используются миллимоли на литр. Поэтому пересчитываем значения в миллимоли с помощью калькулятора, имеющегося в программе. Полученные значения используем при расчёте раствора для подкормки. Поливочный раствор рассчитывают с учётом анализа воды и состава почвенного раствора.
      Состав почвенного раствора изменяется после дождей и подкормки, поэтому пробы для анализа нужно брать все время одним способом. Обычно пробы на состав берут раз в две недели, на Ес чаще.
      Коэффициент разбавления меняется при изменении влажности почвы. Поэтому для большей точности его определяют каждый раз. Но если влажность почвы удаётся поддерживать стабильной, можно один раз определить.
      В основном в интернете можно встретить упрощённый метод. Когда фермеру предлагают приготовить экстракт, отправить на анализ, и сравнить результат с  данными, которые предоставил добрый консультант. Который не учитывает влажность почвы и коэффициент разбавления, а даёт целевые значения из каких-то своих соображений. Почему это делают, я не знаю, может не слышали про коэффициент разбавления.
      Ес и уровни питательных элементов, измеренные в почвенном растворе, нужно сравнивать с уровнями из рецепта для гидропоники на нейтральном субстрате для выращиваемой культуры. Считается, что рецепты из гидропоники подходят для фертигации, во всяком случае ни в интернете ни тут на форуме возражений не встречал.
      Всё написано на основе оригинальных голландских научных работ.
    • Автор: vvs2018
      Вопрос по измерениям СО2
      При строительстве были установлены мониторы СО2 типа UA-06 по одному на 5Га., 2 из 4 вышли из строя, оставшиеся 2 работают с ошибкой.
      Позже в новых блоках устанавливали Мониторы типа  Guardian+, проработав 5 лет- 2 из 4шт вышли из строя.
      Какие у Вас смонтированы, и как долго проработали. Пытались ли Вы их ремонтировать?
    • Автор: Askar
      Но все-таки хотелось бы от спецов узнать откуда взялись моли световой энергии? Фотон - не молекула, потому не может иметь молекулярной массы. Если речь бы шла об атомах, то был бы грамм-эквивалент. Но и здесь не проходит, т.к. фотон не имеет массы покоя.
Пользовательский поиск





×