Войти  
Подписка 0
Гость admin

Светокультура растений в теплице

Оцените эту тему

1 сообщение в этой теме

Малая интенсивность естественного света и короткий день в течение многих осенне-зимних месяцев не позволяют выращивать в теплицах овощные растения без дополнительного электрического освещения. В настоящее время искусственное освещение (светокультура растений) широко применяется в средней и северной частях России и СНГ при выращивании рассады огурца и томата.

 

Для досвечивания овощных растений используют люминесцентные трубки (ЛЛ) мощностью 40 или 80 вт марок ЛДЦ (дневного света) или ЛБ (белого света) и лампы ДРЛ мощностью 250, 400, 500 и 1000 вm. На базе этих ламп начали изготовлять специальные лампы для выращивания растений («фитолампы»), к. п. д. которых на 15—20% выше стандарта.

Пользоваться лампами накаливания в качестве источника света или для замены ими дросселей у люминесцентных ламп или у ламп ДРЛ не рекомендуется.

Лампы накаливания имеют очень низкий коэффициент полезного действия: в световое излучение у них превращается менее 10% расходуемой энергии. Они излучают много оранжевых, красных и инфракрасных лучей, что вызывает ненормальное вытягивание стеблей, деформацию листьев, перегрев и ожоги растений. Кроме того, значительно увеличивается расход электроэнергии на единицу продукции. 

Поэтому теперь их практически не применяют для выращивания рассады или получения плодов томата или огурца. Исключением является выгонка лука, петрушки и других зеленных культур. В этом случае допустимо использование ламп накаливания мощностью 100, 150 вт; установленная мощность может быть порядка 200 вт на 1 м2 досвечиваемой площади. Высота подвеса над растениями 50—60 см, продолжительность досвечивания в сутки — минимум 6, максимум 18 (при отсутствии естественного света) часов. При выращивании растений огурца и томата с досвечиванием перепад температуры воздуха между светлым и темным периодом суток — порядка 6—8°.

 

Одновременное выращивание в одной теплице рассады огурца и томата не рекомендуется из-за разных требований этих растений к температуре и влажности воздуха.

При использовании ЛЛ и ДРЛ в 2 смены в одном помещении, при освещении каждой половины в течение суток по 12 часов весьма желательно освещенную и темную части теплицы разделять плотным занавесом, обеспечивающим растениям нужный перепад температуры и несколько часов абсолютной темноты, необходимой для прохождения нормальных физиологических процессов у растений. В противном случае наблюдается отставание в развитии и опадение первых цветков.

Люминесцентные трубки (ЛЛ) монтируют в прямоугольные рамы, сделанные из дюралевого или железного уголка, металлических трубок или деревянных планок. Рамы подвешивают горизонтально (над рассадой) или вертикально (между взрослыми, плодоносящими растениями) на блоках, шарнирах или роликах, позволяющих изменять высоту их подвеса. Дроссели монтируют в огдельные пакеты в металлическом, хорошо вентилируемом каркасе. Эти пакеты помещают или в стороне от рам, предохраняя их от сырости и перегревания, или на самой раме над трубками.

В пасмурные дни или в темные часы суток на рамы с ЛЛ помещают экраны на расстоянии 3—4 см выше трубок. Экраны делают из полированного алюминия, жести, железа или фанеры, окрашенных сернокислым барием, окисью магния, мелом, известью или масляной краской. Можно применять металлизированную пленку с высоким коэффициентом отражения. Такие экраны увеличивают освещенность растений на 15—25% . Под рамами с экраном температура воздуха повышается на 3—5° в зависимости от отражающего покрытия.

Лампы ДРЛ монтируют либо вертикально в стандартной осветительной арматуре, либо горизонтально в прямоугольной, корытообразной арматуре из металла с отражающим внутренним слоем и вентиляционными отверстиями. Эти лампы используют как в стационарных, так и в подвижных установках с поступательно-возвратным движением.

В небольших теплицах лампы ДРЛ можно периодически передвигать вручную, подвесив их на тросе, натянутом по оси стеллажа. Передвижение осуществляется по мере надобности, в зависимости от состояния растений.
Эффективность освещения рассады люминесцентными трубками или лампами ДРЛ практически одинакова.

Дополнительное освещение необходимо применять сразу после появления всходов и не допускать перерыва между естественным и искусственным освещением. Суммарное освещение в течение суток (естественное и искусственное) не должно лревышать для огурца 12 часов, для томата 16—18 часов.

 

Дополнительное освещение рассады огурца и томата почти вдвое сокращает время, необходимое для ее выращивания.

Весьма способствует повышению урожая (на 30—50%) добавление в воздух теплицы углекислоты из расчета 0,2—0,3% к объему помещения.

 

Высокое качество рассады, выращенной под ЛЛ или ДРЛ, позволяет получить первые плоды на 20—25 дней раньше, чем без досвечивания. Общий урожай за вегетационный период увеличивается на 25—30%. Себестоимость овощей, несмотря на дополнительные затраты, снижается на 15—20%.

Затраты на осветительные установки окупаются за 1—2 года. 

Величину дополнительных затрат на одно растение при выращивании рассады огурца или томата с дополнительным освещением можно определить по следующей формуле:

X = Q+R+(V*Kp)-S
             W


где Q — величина амортизационных отчислений электрооборудования на 1 мосвещаемой площади (средний срок амортизации 10 лет); иногда при выращивании рассады эта площадь используется 2—3 раза;
R — амортизационные отчисления электроламп, установленных на 1 м2 (среднее время горения ламп 5000 часов);
V — стоимость 1 квт*Ч;
К — количество часов досвечивания за весь период;
р — суммарная установленная мощность ламп на 1 м2 в квт;
S — стоимость сэкономленного топлива;
W — деловой выход рассады c 1 м2 в шт. (огурца 80—100, томата 70—80 шт.).

Дополнительное освещение взрослых растений ЛЛ или ДРЛ для получения зимой зрелых томатов и огурцов вполне возможно, хотя экономически пока не всегда выгодно. В этом случае установленную мощность светильников надо значительно повысить, а общую продолжительность досвечивания довести до 70— 100 дней в зависимости от культуры. Затрата электроэнергии на 1 кг продукции достигает 150—200 квт*ч.

Весьма перспективны для выращивания рассады и плодоносящих растений в теплицах ксеноновые лампы с водяным охлаждением.
При определенной системе-подвески ксеноновых ламп каждая из них освещает рассаду на площади 15—20 м2. При этом лампы не загораживают солнечный свет, не мешают агротехническому уходу и не требуют уборки их весной и подвеса осенью (табл. 1).

Таблица 1. Характеристика технологии выращивания рассады для зимних теплиц при дополнительном освещении (для средних широт России)
 

Показатели Огурец Томат
Период досвечивания (сроки посева на рассаду устанавливают с таким расчетом, чтобы к моменту высадки ее на постоянное место имелась достаточная естественная освещенность):    
1-й срок (начало)

10-15/XII

15-25/XII

2-й срок

1-10/I

10-20/I

Время досвечивания (дней)

18-20

30-35

Число часов досвечивания в сутки

9-10

12-13

Электрическая мощность ламп (вт/м2)

300

400

Освещенность растений (тыс. люксов)

6

8

Температура воздуха в зоне растений (градусов):    
днем

26-28

23-25

ночью

18

16

Высота подвеса над растением (см):    
ламп ЛЛ

5-10

5-10

ламп ДРЛ

30-40

30-40

Затрата электроэнергии на 1 шт. рассады (кв*ч)

1-1,5

1,5-2

Абсолютные затраты электроэнергии на единицу продукции (на 1 шт. рассады или на 1 кг плодов) определяются географической широтой нахождения теплиц, временем года, скороспелостью культуры или сорта и, наконец, применяемой агротехникой (метод гидропоники, например, значительно ускоряет плодоношение).

Таблица 2. Характеристика технологии выращивания на плодоношение растений в зимние месяцы при дополнительном освещении в теплице или в помещении без естественного света.
 

Показатели Огурец Томат
Продолжительность досвечивания взрослых растений (дней) 60-70 70-100
Число часов досвечивания в сутки 12-14 14-16
Электрическая мощность ламп (вт/м2) 600-700 800-900
Освещенность растений (тыс. люксов) 8 10

Таблица 3. Эксплуатационные показатели осветительных установок.
 

Тип лампы и светильника Потребность удаления светильника при агротехническом уходе Коэффициент затенения светильника Потребность в балластном устройстве Потери мощности в балластном устройстве Коэффициент мощности Условия применения с наибольшим эффектом Потребное количество ламп на 100 м2 (шт.)
Люминесцентные трубки:              
30 вт Есть 1 Есть 20-25 0,55 Рассада 1200
80 вт " 1 " 20-25 0,55 " 500
Лампа ДРЛ-500 Не всегда 0,21 " 7 0,60 Универсальна (в движении) 100
Ксеноновая лампа ДКСТВ-6000 Нет 0,013 Нет 0 1 Универсальна 5

Примечание. При использовании ламп ЛЛ и ДРЛ принудительное охлажление не требуется, при ксеноновых лампах - необходимо.

Изменено пользователем admin

Поделиться сообщением


Ссылка на сообщение
Поделиться на других сайтах

Создайте аккаунт или войдите для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!


Зарегистрировать аккаунт

Войти

Уже зарегистрированы? Войдите здесь.


Войти сейчас
Войти  
Подписка 0

  • Похожие публикации

    • Автор: Марите
      Фирма Валоя опубликовала заметку о влиянии светодиодного досвечивания на здоровье людей.
      Переводить некогда, но ввиду важности темы копирую ее здесь полностью на английском.
       
      The effect of LED grow lights on human health
      The rapid increase in the use of LED technology for horticultural lighting applications has also raised discussions regarding the potential human health risks compared to legacy lighting solutions. This is somewhat due to the differences in visual appearance (colour and intensities) of the light in such applications.
      At a high enough intensity, any type of light regardless of the source, has the potential to harm the eyes or skin through prolonged thermal exposure or photochemical effects of ultraviolet, blue light &/or infrared emissions. Shorter wavelength, higher energy blue light (400nm and 500nm) can cause retina damage through a combination of photochemical action and high intensity. Higher concentration light sources will provide more direct energy and a higher risk. For example, staring at a clear blue sky (scattered blue light) is a low risk, while looking directly at the sun can begin irreversible damage almost immediately.
      Prolonged direct viewing of bright light sources must always be avoided, especially at short distances. In practice, nobody voluntarily spends any significant time looking directly at an intense light source. Common sense and the natural human instinctive aversion reaction (we instinctively shut our eyes or look away) means that prolonged direct exposure of the eye to a potentially damaging light source will be avoided.
      Like other lighting technologies, LED grow lights must be checked for photobiological safety according to EN 62471 – the standard for photobiological safety of lamps and lamp systems. This includes thermal and blue light analysis in the spectral range is 200nm to 3000nm. EN 62471 exposure limit classifications represent conditions under which it is believed most people may be repeatedly exposed without adverse health effects. It should be noted that the classification only indicates potential risk. Depending upon use, the risk may not actually become a real hazard.
      When it comes to human visual perception, what is often forgotten is that “traditional” light sources were never designed or intended specifically for horticulture applications. Historically, artificial light has always been optimised for human visual benefit. LED grow lights on the other hand are specifically designed for the benefit of plants and thus sometimes appear strange to human eyes. Valoya LED grow lights are true wide spectrum lights, meaning they contain bits of all colours from the spectrum, including outside the PAR area, just like the sun. Because of this they appear from white to soft pink which makes them pleasant to work under and makes identifying the colour of plants underneath them easy. A cheap alternative to that, which most LED manufacturers opt for, is using red, blue and white LED chips which result in a strong, piercing pink color, unpleasant to human eyes. In terms of health effects, Valoya LED grow lights are not blue dominant and are classified in the no-risk or lowest risk group.
      The eye is a complex organ that naturally tries its best to compensate for varying lighting conditions, and LED grow light spectra may not always appear “natural” to humans. If lighting conditions for the human eye change (e.g. going from a LED lit growth environment to natural daylight), colour perception may be temporarily affected while the eye adjusts. This is natural and should not be misinterpreted as possible “damage” from exposure to LED light.
      In conclusion it can be said that commercially available LED light sources (for horticultural or other applications) can be considered human safe when designed, installed and used in accordance with the applicable standards, regulations and manufacturer’s instructions. Overall, in terms of photobiological safety, LED grow lights have similar characteristics to those of any other lighting technology.
      Photo credit: Valoya

      02/22/2017 - Valoya Research Team
    • Автор: BKB
      Мероприятия IV Всероссийского светотехнического Форума в Саранске 15-16 марта 2017 г.
      Конференция по агрофотонике (освещение в сельском хозяйстве)
      Созданный в 2016 году консорциум «Агрофотоника» представит программу действий по открытию нового рынка для светодиодного освещения. Светодиоды стали ключом к новому этапу создания агрофабрик, не зависящих от времени года, места расположения и размера сельхозугодий.
      Конференция пройдет в рамках IV Всероссийского светотехнического Форума 15 марта с 15:30 до 18:00 в конференц-зале АУ «Технопарк-Мордовия.
      Организатор и модератор - Генеральный директор АПСС Евгений Долин.

      Первая ключевая задача Агрофотоники – собрать доказательную базу. Надо понять, как и на что в растениях воздействует свет определенных длин волн, надо разобраться, какие дозы, какого спектра и в какое время нужны тому или иному растению для получения товарного результата. Главный агроном филиала "Ботанического сада МГУ им. Ломоносова - Аптекарский огород" к.б.н. Ольга Миронова выступит с докладом «Программа научных исследований консорциума "Агрофотоника".

      Вторая ключевая проблема в Агрофотонике – метрология. Как подтвердить, что установка обеспечивает требуемое количество световой энергии требуемого спектрального состава? Как сертифицировать облучатели? Какие методики измерений надо разработать? О задачах развития средств измерения и нормирования слушателям расскажет Леонид Прикупец, заведующий лабораторией ВНИСИ им. Вавилова. Алексей Панкрашкин, Генеральный директор ООО «Интех-Инжиниринг» (СПб) представит участникам информацию о разработанном им приборе для измерения облученности растений.

      Разобравшись с программой освещения и измерениями облучателей надо понять, как сконструировать светодиодный облучатель: на отдельных красно-синих СД или иначе? Директор по продвижению ООО «БЛ ТРЕЙД» Владислав Терехов расскажет о формировании спектра фитооблучателя: комбинации цветных светодиодов или синий светодиода с люминофором. Как рассчитать и создать светильник для теплиц выступит представитель компании Cree Inc. (США) Дмитрий Юровских. Завершит конференцию доклад представителя компании «LEDIL» (Финляндия) Сакена Юсупова «Особенности КСС для разных видов тепличного освещения».

      Информация представлена Ассоциацией Производителей Светодиодов и Систем на их основе - АПСС.
      Для посещения необходимо зарегистрироваться: http://lighting-forum.ru/register/ ! 
    • Автор: Марите
      Вот какую интересную систему создал "Philips Lighting" для цветоводческого хозяйства "Karel Bolbloemen". Они ее называют динамическим освещением. В этих светильниках можно изменять состав спектра в зависимости от фазы выращивания растений, в том числе, чтобы добиться более прочных цветоносов.  



      Светильники "GreenPower Dynamic LED" позволяют изменять сочетания цветов (дальний красный, красный, белый и синий) и интенсивность каждого цвета с помощью специальной компьютерной программы. Проведенные исследования показали, что тюльпаны по-разному реагируют на разные цвета спектра.

      Для производителей тюльпанов, как например, хозяйство  Karel Bolbloemen B.V. такое досвечивание предоставляет возможность повысить качество продукции и снизить процент отходов. Кроме того, становится возможным управлять ростом и развитием растений, чтобы обеспечивать максимальный выход продукции к моментам пикового спроса. 



      По словам владельца хозяйства  Karel Bolbloemen B.V. Берта Карела, новые светильники Филипса позволяют получать тюльпаны с коротким и компактным стеблем, что делает тюльпаны более "сильными" (я бы сказала, менее рыхлыми, прочными).




      В хозяйстве "Karel Bolbloemen B.V." многоярусное выращивание было начато в 2011 году. Благодаря этому, хозяйство стало первым в Голландии, осуществившим "внутреннее расширение площади производства". На площади 3000 м2 тюльпаны выращивают в 4 яруса в контейнерах с подтоплением. В первые несколько дней луковицы находятся в темноте до начала прорастания, затем включается LED-досвечиваниеt.







      Технический монтаж осуществила фирма "Van der Laan". Совмсестно с  "Philips Lighting" была разработана программа и техническое решение управления освещением.
      Publicatiedatum: 17-2-2017
      http://www.bpnieuws.nl/artikel/9315/Licht-en-gewas-in-symbiose
Пользовательский поиск